

https://doi.org/10.21608/zumj.2025.418730.4142

Volume 31, Issue 11 November. 2025

Manuscript ID:ZUMJ-2508-4142 DOI:10.21608/zumj.2025.418730.4142

REVIEW ARTICLE

Cardiac Implantable Electronic Device Lead-Induced Tricuspid Regurgitation Ismail Mohamed Ibrahim, Tarek Ahmed Naguib, Shehab Ezzat Ahmed Talaat*, Hisham Samir Roshdy

Cardiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt

*Corresponding author:

Shehab Ezzat Ahmed Talaat

E-mail:

shehab2ezz@gmail.com

Submit Date: 29-08-2025 Revise Date: 15-09-2025 Accept Date: 27-09-2025

ABSTRACT

Background: Tricuspid regurgitation (TR) has traditionally been regarded as benign condition, but moderate to severe TR is now recognized as a predictor of morbidity and mortality. Cardiac implantable electronic devices (CIEDs) including (pacemakers, Implantable cardioverter-defibrillators (ICD) & cardiac resynchronization therapy (CRT)) have been increasingly used in the treatment of bradyarrhythmias and some types of tachyarrhythmias. Lead-induced TR (LITR) has emerged as a clinically significant complication following CIED-lead implantation, often underdiagnosed and undertreated. Our objective is to review the mechanisms, diagnosis, outcomes, and management strategies of CIEDassociated TR, with a focus on recent advances and clinical implications. This narrative review synthesizes findings from observational studies, cohort analyses, and recent guideline updates on CIED-related TR. Literature was identified through PubMed and MEDLINE. Reported incidence of new or worsened TR after CIED implantation ranges from 7% to 45%, depending on study design, device type, and follow-up duration. Mechanisms include direct interference with TV apparatus (entanglement, perforation, leaflet impingement), pacing-induced right ventricular dyssynchrony, and implantation-related trauma. Significant LITR is associated with right-sided heart failure, impaired functional capacity, and increased mortality. Diagnosis is challenging due to acoustic shadowing, but 3D echocardiography improves visualization and identification of lead-leaflet interactions. Management options range from medical therapy and careful monitoring to lead extraction, surgical repair or replacement, and newer approaches such as leadless or His-bundle pacing.

Conclusion: Lead-induced TR is an underrecognized complication and early detection through standardized imaging and a multidisciplinary approach to management are essential. Future prospective studies are needed to clarify incidence, predictors, and optimal therapeutic strategies.

Keywords: Tricuspid regurgitation; Cardiac implantable electronic device; Lead-induced tricuspid regurgitation; Pacemaker; Implantable cardioverter-defibrillator

INTRODUCTION

ricuspid regurgitation (TR), after the implantation of a cardiac implanted electronic device (CIED), is becoming widely acknowledged as a clinically significant complication especially in patients who are receiving transvenous right ventricular leads. Although some patients may already have TR from structural or functional right heart disease, new or worsened TR after CIED placement is often attributed mechanical and functional mechanisms [1]. Lead-induced TR may occur through entanglement with chordae tendineae,

adhesion and fibrosis along the valve apparatus, tricuspid leaflets perforation or Annular dilatation and impingement [2]. increasing regurgitation may also be caused by right ventricular dyssynchrony caused by chronic pacing [3]. Depending on the imaging modality, device type, patient selection, and follow-up period, reported incidence rates range greatly, from 7% to over 40% [4]. Crucially, negative consequences such as increasing right-sided heart failure, reduced exercise tolerance, and elevated all-cause mortality have been linked to substantial CIED lead-induced TR [5]. Despite these

Ibrahim, et al 5271 | Page

TR consequences, following CIED implantation is frequently underdiagnosed due to echocardiographic limitations and the subtle onset of symptoms. Standardized particularly with imaging, 3D echocardiography, along with careful clinical follow-up is therefore essential to identify high-risk patients [6]. Determining the best time for intervention, enhancing long-term prognosis, and directing preventive measures all depend on identifying predictors and comprehending the clinical effects of leadinduced TR [5, 6]. Although Lead-induced tricuspid valve interference was initially reported in the late 1900s, concentrated efforts to further quantify the extent of this interference have just recently been made.

ASSOCIATION BETWEEN CIED AND TRICUSPID REGURGITATION

Regurgitation and, less frequently, stenosis are examples of tricuspid valve (TV) dysfunction linked to cardiac resynchronization therapy (CRT), ICD, and PPM implantation. Both (regurgitation &stenosis) are of the primary causes of TV dysfunction. Tricuspid regurgitation (TR) following device lead implantation was

originally documented almost fifty years ago. Since then, TR has been linked to the presence of device leads in many case reports, case series, and retrospective cohort studies. Since it is now known that TR is not a benign disease, interest in this area has grown. The reported incidence of acquiring considerable TR following CIED implantation ranges from 7% to 45% [7]. The results of early research employing 2-dimensional echocardiography revealed mixed findings about the connection between the degree of TR and the existence of a CIED. Some research suggested that CIED implantation was associated with an increase in TR severity, while other investigations reported no appreciable differences in TR severity before and after the implantation endocardial leads. Other research, however, found that improved RV hemodynamics with pacing following right ventricular (RV) lead insertion was responsible for improving TR in subgroups of patients. Nevertheless, research that has included results in their methodology has demonstrated that CIED-mediated TR is linked to a worse prognosis [8].

Table 1: Summary of Major Studies Evaluating Tricuspid Regurgitation after Device Implantation

Author (Year)	Sample Size	Device Type	Imaging Method	Follow-up Duration	Incidence of New/Worsened	_
(1011)			1/1001104	2 41 401011	TR	
Seo et al.	81	Pacemaker	TTE/TEE	Mean 3.5	24%	Mechanistic study;
(2014) [1]				yrs		lead interference
Kim et al.	146	Pacemaker	TTE	Median 2	21%	with tricuspid valve Lead impingement
(2016) [2]	140	1 accilianci	1112	yrs	21 /0	significantly
, , , ,				JIS		associated with TR
Chang et al.	1,502	PPM/ICD	TTE	Median 2.9	18%	TR increased risk
(2018) [3]				yrs		of right-sided heart
				_		failure
Höke et al.	239	Mixed	TTE	5 yrs	38%	TR strongly
(2014) [4]		(PPM/ICD/CRT)			(significant	associated with
				_	TR)	adverse prognosis
Delling et al.	13,575	Pacemaker	TTE	5 yrs	24%	TR associated with
(2019) [5]						increased long-
				_		term mortality
Lee et al.	1,167	PPM/ICD	TTE	3 yrs	15%	Predictors: lead
(2015) [20]						position and RA
						enlargement
Arabi et al.	41	PPM/ICD	TTE	12 months	Progressive	Small prospective
(2015) [16]					worsening	cohort study
					(echo)	

Ibrahim, et al 5272 | Page

MECHANISMS OF CIED-INDUCED TRICUSPID REGURGITATION

Three categories of CIED-induced TR have been explained by the following mechanisms: device-mediated, pacing-related, and implantation-related.

Implantation-Related (Mechanical) Tricuspid Valve Dysfunction

The implantation technique used for CIEDs has changed throughout time and differs from operator to operator. Damage to the TV apparatus has been associated with several technological factors. Direct lead crossing through the tricuspid valve lowers the chance of trauma and tricuspid apparatus damage, which results in reduced TR. Nevertheless, the outcomes of this method have not been fully investigated. This contrasts with the conventional "prolapsing" method of lead implantation [9, 10]. According to certain studies, the more leads that flow through the tricuspid annulus, the higher the chance of developing worsening TR [11]. According to other research, defibrillator leads that are stiffer and bulkier have a larger risk of making TR worse than pacemaker leads [12]. demonstrated by post-mortem As examinations of hearts with device leads and vivo 2D and more recently echocardiographic studies, leads can interfere with the tricuspid valve apparatus by adhering to a leaflet, impinging upon a leaflet, interfering with the subvalvular apparatus, perforating or lacerating a leaflet, and avulsion of a leaflet. These events rarely occur during lead extraction [13].

Lead extraction also has the potential to damage the TV system and turn into an additional lead-mediated TR mechanism. It has been shown that employing more modern lead extraction methods, like laser-assisted lead dissection from adhering material, lowers the possibility of problems like worsening TR [7].

Pacing-Related (Electromechanical) Tricuspid Valve Dysfunction

One known cause of mitral regurgitation is dyssynchronous LV electromechanical activation brought on by RV pacing or left bundle branch obstruction. It is debatable if a comparable mechanism applies to TR [14]. Research links either pacing-induced LV or

RV dyssynchrony to the development of TR following lead implantation. It is believed that MR or systolic or diastolic malfunction of the left ventricle, which increases pulmonary artery pressure and left-sided filling pressure and leads to secondary (functional) TR, are caused by pacing-induced dyssynchrony. This idea is supported by the observation that in 89 consecutive individuals having their first PPM implantation, TR increased following dual-chamber (as opposed to biventricular) PPM implantation [15].

Echocardiography to Diagnose CIED Interference

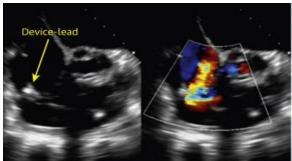
2D and 3D echocardiography can be used to image the TV from both TTE and TEE perspectives. All three leaflets can be viewed concurrently from the RA and RV views, and the location of the device lead in respect to the TV leaflets and annulus is frequently clearly visible.

Considering the high acoustic impedance of the device lead, color Doppler imaging may understate the severity of TR and significant reflectivity; this effect is more noticeable on TTE than TEE [17]. According to recent research, the size and quantity of tricuspid leaflets vary greatly, making it impossible to identify exactly which leaflet pair is being photographed in any of the common perspectives [18].

Consequently, a technique for accurately localizing TV anatomy has been proposed: 2D imaging of the TV leaflets focusing on specific neighboring anatomic landmarks. For instance:

- 1) The anterior leaflet is captured in the near field of the RV inflow image when the septum is visible, and the septal leaflet is captured in the far field.
- 2) If the aortic valve can be seen in the apical 4-chamber view, the anterior and septal tricuspid leaflets are photographed; if the coronary sinus can be seen in this imaging plane, the septal and posterior leaflets are scanned.
- 3) In the parasternal short-axis view, only the anterior leaflet is ever visible [18].

3D echocardiography makes it easier to see


Ibrahim, et al 5273 | Page

the device lead, and CIEDs can be observed in different positions in relation to the tricuspid annulus and leaflets. They may be located in the center of the valve, against, impinging on, or adhering to a leaflet, or in the commissures (anteroseptal, posteroseptal, or anteroposterior).

Greater levels of TR were linked to leads that were designated as "impinging" or "adherent" While the "impinging" lead directly disrupts leaflet coaptation, the adherent lead is attached to the leaflet/tricuspid apparatus but still moves with it. Significant TR was less likely to be linked to leads that were positioned commissurally or in the "center of

the valve." [19].

Anytime there is severe TR in a patient using a device lead, especially if an echocardiography obtained before the device lead was implanted showed little to no TR, lead-induced TR should be investigated. TR jet hugging the device lead, leaflet malcoaptation, lead adherence to the sub-valvular structures which tend to move with the sub-valvular apparatus, extreme lead displacement against the septum and non-RV outflow tract lead position are some indicators of potential lead-induced TR on 2D echocardiography [20].

Figure (1): Patient with Device Lead-Induced TR, left: 2D and color Doppler showing the device lead traversing the TV with significant TR. Right: Intraoperative view showing the device lead entrapped by

fibrous/inflammatory tissue and adherent to the TV leaflets and subvalvular apparatus [17].

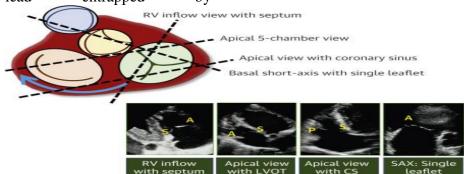
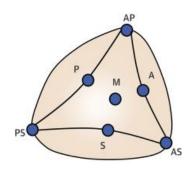
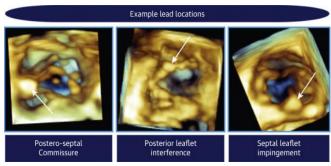




Figure (2): Targeted Imaging to Include Specific Landmarks to Allow More Predictable Imaging of TV Leaflets and Leaflet Pairs: In the right ventricular inflow view (bottom, far left), when the septum and coronary sinus are seen, the leaflets imaged are the septal (S) and anterior (A). In the apical 5-chamber view (bottom middle

left) the S and A leaflets are visualized. In the apical view, when visualizing the coronary sinus (bottom middle right), the S and posterior (P) leaflets are seen. In the short-axis view (bottom far right) when a single leaflet is visualized, the A leaflet is imaged [17].

Ibrahim, et al 5274 | Page

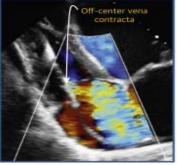


Figure (3): Three Possible Device Lead Tricuspid Leaflet/Valve Interactions. (Left) Device lead in the posteroseptal

commissure. (Middle) Device lead adhering to the posterior leaflet. (Right) Septal leaflet impingement by the device lead [17].

Figure (4): ICD Lead Interference with a Tricuspid Valve Leaflet. 2D (left), 2D color Doppler (middle), and 3D zoom (right) dataset of the tricuspid valve as seen from the

right ventricular perspective in a patient with an ICD lead interfering with the posterior leaflet [20].

CIED-INDUCED TRICUSPID REGURGITATION OUTCOMES

TR linked to CIED causes the right heart to remodel, leading to reduced RV function and enlarged right atrial and ventricular sizes, in the worst case, the clinical manifestations of lead-related TR include peripheral edema, ascites, and hepatomegaly. About 50% of patients with severe lead-related TR who needed TV surgery initially had signs of acute right heart failure [13]. In terms of how TR affected CIED patients' survival, severe TR has also been associated with increased mortality [8].

Little information is available regarding when TR first appears or gets worse following lead implantation. A different pattern of worsening TR was found using the TR quantification method in a small report that included 41 patients who had repeat echocardiograms at 1-, 6-, and 12-month intervals as well as right after CIED.

Following implantation, the patients' Color Doppler assessments revealed an initial tendency of decline in first month, which stabilized six and twelve months later. On the other hand, quantitative evaluation showed that throughout the course of the follow-up period, the VC and PISA progressively grew while RV&RA sizes and RV function gradually declined [16].

MANAGEMENT OF PACEMAKER-INDUCED TRICUSPID REGURGITATION

The existence of RSHF symptoms, the severity of TR, the degree of lead-related valve damage, the degree of RV dysfunction and TA dilatation, and the differentiation between lead-related primary TR and secondary functional TR are some of the factors that determine how CIED-related severe TR is managed [7].

The frequent occurrence of both disorders, especially in this patient group, makes distinction challenging. Patients with left-sided illness, which is known to result in subsequent right-sided dysfunction and eventually functional TR, frequently have pacemaker leads placed.

Additionally, Lead-related severe primary TR

Ibrahim, et al 5275 | P a g e

may cause RV remodeling with tricuspid annular (TA) dilatation and leaflet malcoaptation if treatment is not received promptly. Even if the lead is eliminated and the leaflets' functionality is restored, this leads to a superimposed secondary TR that frequently does not get better (figure 5) [7].

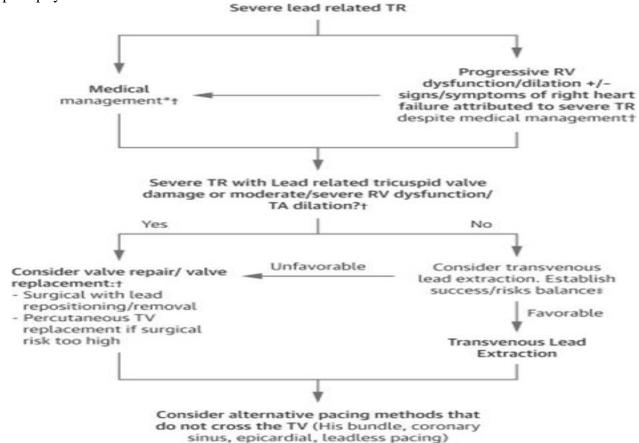


Figure (5): Management strategies for severe lead induced TR include medical therapy,

Medical Therapy

Diuretics are the mainstay of treatment for people having symptoms of right heart failure and severe TR. In addition to the commonly used loop diuretics, aldosterone antagonists are suggested as beneficial additional medications, especially when there are secondary aldosterone elevation and hepatic congestion. However, it is unknown what the long-term effects of this cautious therapeutic approach will be in patients with severe lead-induced TR [8].

Transvenous Lead Extraction

There is currently no prospective data and, hence, no guideline recommendations to support lead extraction for severe TR in the absence of device or lead infection, despite significant improvements in the safety and efficacy of lead extraction over the past ten years. This is demonstrated by the fact that most extractions are still caused by device

consideration for transvenous lead extraction, and TV repair/replacement [7].

infection [8].

Additionally, TV damage can make lead extraction more difficult and aggravate TR. The removal of several leads, advanced age, and endocarditis involving the TV as the indication for device explanation all predict TR getting worse after TLE [21].

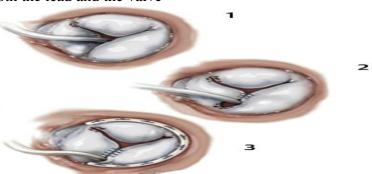
Irreversible severe TR can result from unfavorable RV remodeling and TA dilatation [7]. Lead extraction should be beneficial if there is no severe RV dysfunction or TA dilatation, the TR cause is believed to be lead-related, and the surgical risk is minimal [7].

Leads inserted within a year may normally be extracted using basic traction techniques, while leads that have been there for more than a year typically require more modern equipment (mechanical and laser-assisted dissection which allow removing lead from encasing or ensheathing valve material with low incidence of complications [21, 22].

Ibrahim, et al 5276 | Page

Surgical Treatment

There are some differences in the intensity of the recommendations between the ESC valvular guidelines and the American Heart Association, and the rationale for TV surgery in patients of severe primary TR without leftsided illness are not well supported by evidence.


For severe primary TR, TV surgery should be considered in two situations: first, in patients who continue to have symptoms after taking diuretics (strongly recommended by ESC and weakly recommended by AHA/ACC); and second, in patients who show signs of progressive RV dilatation or dysfunction (strongly recommended by ESC and very weakly recommended by AHA/ACC).

In these situations, both the lead and the valve

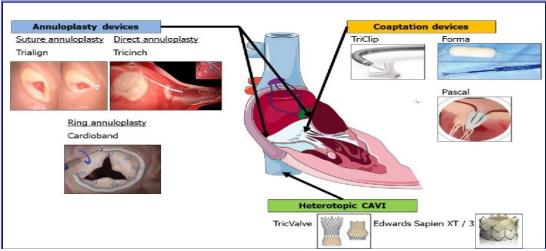
should be addressed by any potential operation. Lead damage to valves can be fixed via suture (DeVega) annuloplasty, ring annuloplasty, or valve replacement with or without lead retention.

Lead management options include lead repositioning, which ensures that the lead is fastened in a position that does not impede valve function, or extraction and substitution with a pacing method (coronary sinus, epicardial, leadless pacing) that avoids crossing the TV.

The latter can be achieved by using suture approximation of both leaflets to secure the lead in the leaflet commissure, usually between the septal and posterior leaflets [23].

Figure (6): Steps of TV surgical Repair (TV annuloplasty). (1) Mobilized defibrillator lead and leaflets of the tricuspid valve. (2) Lead repositioned in the cleft between the septal and inferior and posterior leaflets, with suture **Percutaneous (Transcatheter) Treatment**

The alternatives for percutaneous TV repair have increased recently. None of these are intended for severe TR caused by lead, though. Instead, the main goal of these methods is to cure functional TR; some of them have excluded patients who have defibrillator leads or PPM [24].


They are classified into 3 groups according to the mechanism and the anatomic target:

1) Annuloplasty devices: based either on transcatheter suture or ring implantation techniques, and include: **Trialign** device, **TriCinch** device and **Cardioband** tricuspid valve reconstruction system [27].

approximation of the leaflets above the cleft. (3) Repositioned lead with cleft closure and tricuspid valve annuloplasty [23].

- **2)** Coaptation devices: designed to improve leaflet coaptation in functional TR and include 3 devices: **Tri-Clip** (Used for Tricuspid transcatheter edge-to-edge repair (T-TEER), **FORMA** repair system and the **PASCAL** system [27].
- 3) Heterotopic caval valve implantation (CAVI): include techniques for heterotopic caval valve implantation, where self-expanding bioprosthetic valves or balloon-expandable valves are placed in the inferior and superior vena cava [28].

Ibrahim, et al 5277 | Page

Figure (7): Transcatheter techniques targeting functional TR including: Annuloplasty devices (Trialign device, TriCinch device and Cardioband), Coaptation devices (Tri-Clip,

TRANSVALVULAR LEAD SUBSTITUTES

TV dysfunction caused by lead can be lessened by:

1) Using polytetrafluoroethylene coated CIED-leads to decrease inflammatory and foreign body endocardial fibrotic reactions, preventing silicone-induced contact dermatitis.

2) Removing the transvalvular lead

Following the removal of the lead that was shown to be the perpetrator, alternatives to pace the heart without crossing the TV are needed.

Pacing the left ventricle through the **coronary sinus** is conceivable, but might be constrained by lead instability, high capture thresholds, and phrenic nerve stimulation.

Epicardial pacing, the invasive nature of the procedure and the somewhat greater lead failure rate as compared to transvenous leads

FORMA repair system and the PASCAL system) and Heterotopic caval valve implantation (CAVI) [27].

are of the limitations [25].

His bundle pacing has been focused on in research since 1967, which reduces the negative effects of RV pacing by narrowing the QRS complex, preventing ventricular dyssynchrony, and giving the ventricles a more physiological activation sequence.

His bundle can be paced without impairing TV closure and function since it penetrates the membranous septum on the atrial side of the TV leaflet insertion.

Leadless pacemakers are another innovative way to lessen or completely eradicate many of the issues, such as TR, associated with traditional RV pacing.

Currently, the RV apex is implanted with transvenous single-chamber devices including: **Micra pacing system** (Medtronic, Minneapolis, Minnesota) and **Nano-stim** (St. Jude Medical, St. Paul, Minnesota) [26].

Table 2: Recent Trials and Guidelines Relevant to CIED and Tricuspid Regurgitation (2020–2024)

Item	Year	Туре	Population / Intervention	Key Finding
Meta-analysis of TR after device implantation [29]	2023	Meta- analysis	Patients with CIEDs (multiple observational studies)	Confirmed nontrivial incidence of new/worsened TR and identified predictors; highlighted heterogeneity.
Systematic review — His-bundle pacing and TR [31]	2022	Systematic review	Patients undergoing His-bundle pacing (HBP)	Mixed results: some studies report improvement, others worsening of TR.
TRILUMINATE	2023	Randomized	Patients with	T-TEER reduced TR severity

Ibrahim, et al 5278 | Page

Item	Year	Type	Population /	Key Finding
			Intervention	
Pivotal (TriClip T-		controlled	symptomatic	and improved quality of life
TEER) [30]		trial	severe TR	at 1 year; improved
,		(pivotal)	randomized to	symptoms and TR grade
		,	TriClip T-	though no clear 1-yr
			TEER vs	difference in mortality/HF
			medical	hospitalization.
			therapy	nos picanzaci on
CLASP II TR /	2021-	Ongoing	Patients with	Ongoing pivotal trial:
PASCAL program		pivotal trial	severe TR	preliminary reports show
(ongoing) [32]	2024	pivotai tilai	treated with	safety and feasibility of
(ongoing) [32]			PASCAL	PASCAL repair.
				PASCAL repair.
			medical	
			therapy	
ESC/EACTS	2021	International	Patients with	Re-emphasizes surgical
Guidelines —		guideline	valvular	indications for severe TR;
Management of			disease	notes emerging role of
Valvular Heart			(includes TR)	percutaneous options.
Disease [33]				
ACC/AHA	2020/20	Guideline	Broad	Provides recommendations
Guideline —	21	(ACC/AHA)	valvular	for surgical TR management;
Management of			disease	acknowledge percutaneous
Valvular Heart			guidance	therapies are emerging.
Disease [34]			(includes	
. ,			tricuspid	
			valve)	

LIMITATIONS AND FUTURE DIRECTIONS

The current evidence on CIED lead-induced tricuspid regurgitation (LITR) has several important limitations. First, most available studies are retrospective, single-center, and heterogeneous in design, making it difficult to draw firm conclusions about incidence and causality. Second, the diagnosis of TR is often based conventional on echocardiography, which may underestimate severity due to lead-related artifacts and the complex anatomy of the tricuspid valve. The adoption of standardized imaging protocols, particularly 3D echocardiography multimodality approaches, is needed to improve diagnostic accuracy. Third, patient populations and device types vary widely across studies, with inconsistent reporting of baseline TR and follow-up duration, which may contribute to the broad incidence range reported (7-45%). In addition, prospective data on the natural history of LITR and its

optimal management remain limited. There is no consensus on the timing of intervention, and current guideline recommendations are based largely on expert opinion rather than randomized evidence. The role of transvenous lead extraction, leadless pacing systems, Hisbundle pacing, and novel percutaneous tricuspid therapies require further investigation. Future research should focus on large, multicenter prospective determine the true prevalence and predictors of LITR, as well as randomized studies to assess the efficacy of emerging treatment strategies. Establishing standardized definitions and echocardiographic criteria for lead-induced TR will also be critical to enable consistent reporting and facilitate clinical decision-making.

Conflict of Interest: None Financial Disclosures: None

Availability of the data: Upon reasonable request, the associated author will make the datasets created and/or examined during the

Ibrahim, et al 5279 | Page

current work available.

Authors contribution: In addition to writing and getting the book ready for publication, the writers oversaw gathering and analyzing the data. The final version was examined and approved by all authors.

REFERENCES

- 1. Seo Y, Ishizu T, Nakajima H, Sekiguchi Y, Watanabe S, Aonuma K. Mechanisms of tricuspid regurgitation after implantation of a ventricular pacemaker lead. *Circ J.* 2014;78(5):1171-8.
- 2. Kim JB, Spevack DM, Tunick PA, Bullinga JR, Kronzon I, Chinitz LA. Impact of transvenous pacemaker leads on tricuspid valve function. *Am J Cardiol*. 2016;117(6):988-94.
- 3. Chang JD, Manning WJ, Ebrille E, Zimetbaum PJ. Tricuspid valve regurgitation following transvenous pacemaker implantation. *J Am Coll Cardiol*. 2018;71(10):1043-52.
- 4. Höke U, Auger D, Thijssen J, Wolterbeek R, van der Velde ET, Holman ER, et al. Significant lead-induced tricuspid regurgitation is associated with poor prognosis at long-term follow-up. *Heart*. 2014;100(12):960-8.
- 5. Delling FN, Hassan ZK, Piatkowski G, Markson LJ, Tsao CW, Rajabali A, et al. Tricuspid regurgitation and mortality in patients with pacemaker leads. *J Am Heart Assoc*. 2019;8(14):e012030.
- 6. Dreyfus GD, Corbi PJ, Chan KM, Bahrami T. Secondary tricuspid regurgitation or dilation: which should be the criteria for surgical repair? *Ann Thorac Surg.* 2005;79(1):127-32.
- 7. Chang JD, Manning WJ, Ebrille E, Zimetbaum PJ. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. *J Am Coll Cardiol*. 2017;69(18):2331-41.
- 8. Al-Bawardy R, Krishnaswamy A, Rajeswaran J, Bhargava M, Wazni O, Wilkoff BL, et al. Tricuspid regurgitation and implantable devices. *Pacing Clin Electrophysiol*. 2015;38(2):259-66.
- 9. Rajappan K. Permanent pacemaker implantation technique: Part II. *Heart*. 2009;95(4):334-42.
- 10. Hong J, Zheng Y, Zheng H, Zhou Q, Hu X, Zhou S, et al. Effects on tricuspid regurgitation by different techniques for pacing lead transvalvular implantation: study protocol for a randomized clinical trial. *Trials*. 2024;25(1):312.
- 11. de Cock CC, Vinkers M, Van Campe LC, Verhorst PM, Visser CA. Long-term outcome of patients with multiple (≥3) noninfected transvenous leads: a clinical and echocardiographic study. *Pacing Clin Electrophysiol.* 2000;23(3):423-6.
- 12. Kim JB, Spevack DM, Tunick PA, Bullinga JR, Kronzon I, Chinitz LA. The effect of transvenous pacemaker and implantable cardioverter-defibrillator lead placement on tricuspid valve function: an observational study. *J Am Soc Echocardiogr*. 2008;21(3):284-7.
- 13. Lin G, Nishimura RA, Connolly HM, Dearani JA, Sundt TM 3rd, Hayes DL. Severe symptomatic tricuspid valve regurgitation due to permanent

- pacemaker or implantable cardioverter-defibrillator leads. *J Am Coll Cardiol*. 2005;45(10):1672-5.
- 14. Alizadeh A, Sanati HR, Haji-Karimi M, Fazelifar AF, Emkanjoo Z, Sadr-Ameli MA, et al. Induction and aggravation of atrioventricular valve regurgitation in the course of chronic right ventricular apical pacing. *Europace*. 2011;13(11):1587-90.
- 15. Sadreddini M, Haroun MJ, Buikema L, Gillis AM, Kuriachan V. Tricuspid valve regurgitation following temporary or permanent endocardial lead insertion, and the impact of cardiac resynchronization therapy. *Open Cardiovasc Med J.* 2014;8:113-20.
- 16. Arabi P, Ozer N, Ates AH, Yorgun H, Oto A, Aytemir K. Effects of pacemaker and implantable cardioverter-defibrillator electrodes on tricuspid regurgitation and right-sided heart functions. *J Cardiol*. 2015;66(5):637-44.
- 17. Addetia K, Harb SC, Hahn RT, Kapadia S, Lang RM. Cardiac implantable electronic device lead-induced tricuspid regurgitation. *JACC Cardiovasc Imaging*. 2019;12(4):622-36.
- 18. Addetia K, Yamat M, Mediratta A, Moss JD, Nayak HM, Burke MC, et al. Comprehensive two-dimensional interrogation of the tricuspid valve using knowledge derived from three-dimensional echocardiography. *J Am Soc Echocardiogr*. 2016;29(1):74-82.
- 19. Seo Y, Ishizu T, Nakajima H, Sekiguchi Y, Watanabe S, Aonuma K. Clinical utility of 3-dimensional echocardiography in the evaluation of tricuspid regurgitation caused by pacemaker leads. *Circ J.* 2008;72(9):1465-70.
- 20. Lee RC, Friedman SE, Kono AT, Greenberg ML, Palac RT. Tricuspid regurgitation following implantation of endocardial leads: incidence and predictors. *Pacing Clin Electrophysiol*. 2015;38(10):1267-74.
- 21. Coffey JO, Sager SJ, Gangireddy S, Levine A, Viles-Gonzalez JF, Fischer A. The impact of transvenous lead extraction on tricuspid valve function. *Pacing Clin Electrophysiol*. 2014;37(1):19-24.
- 22. Bongiorni MG, Burri H, Deharo JC, Starck C, Kennergren C, Saghy L, et al. 2018 EHRA expert consensus statement on lead extraction: recommendations on definitions, endpoints, research trial design, and data collection requirements for clinical scientific studies and registries. *Europace*. 2018;20(7):1217.
- 23. Raman J, Sugeng L, Lai DT, Jeevanandam V. Complex tricuspid valve repair in patients with pacer defibrillator-related tricuspid regurgitation. *Ann Thorac Surg.* 2016;101(5):1599-601.
- 24. Taramasso M, Maisano F. Novel technologies for percutaneous treatment of tricuspid valve regurgitation. *Eur Heart J.* 2017;38(35):2707-10.
- 25. McLeod CJ, Attenhofer Jost CH, Warnes CA, Hayes DL, Dearani JA, Ammash NM. Epicardial versus endocardial permanent pacing in adults with congenital heart disease. *J Interv Card Electrophysiol*. 2010;28(3):235-43.

Ibrahim, et al 5280 | Page

- 26. Reynolds DW, Ritter P. A leadless intracardiac transcatheter pacing system. *N Engl J Med*. 2016;374(26):2604-5.
- 27. Asmarats L, Puri R, Latib, A, Navia JL, Rodés-Cabau J. Transcatheter tricuspid valve interventions: Landscape, challenges, and future directions. Journal of the American College of Cardiology. 2018;71(25):2935–56.
- 28. Lauten A, Figulla HR, Unbehaun A, Fam N, Schofer J, Doenst T, Hausleiter J, Franz M, Jung C, Dreger H, Leistner D, Alushi B, Stundl A, Landmesser U, Falk V, Stangl K, Laule M. Interventional treatment of severe tricuspid regurgitation: Early clinical experience in a multicenter, observational, first-in-man study. Circulation: Cardiovascular Interventions. 2018;11(11):e006061.
- 29. Al-Bawardy R, Krishnaswamy A, Kapadia S. Incidence and outcomes of tricuspid regurgitation after cardiac device implantation: A systematic review and meta-analysis. Europace. 2023;25(1):58–68.
- 30. Nickenig, G, Weber M, Schueler R, Hausleiter J, Nabauer M, von Bardeleben RS, TRILUMINATE Investigators. Transcatheter repair for patients with

- tricuspid regurgitation. New England Journal of Medicine. 2023;389(4):327–39.
- 31. Zanon F, Ellenbogen KA, Dandamudi G, Sharma PS, Lustgarten DL, Tung R, Vijayaraman P. Permanent His-bundle pacing: A systematic literature review and meta-analysis. Heart Rhythm O2. 2022;3(1):14–25.
- 32. Edwards Lifesciences. CLASP II TR clinical trial: PASCAL transcatheter valve repair system for tricuspid regurgitation. ClinicalTrials.gov Identifier: NCT04097145, 2023, Retrieved from https://clinicaltrials.gov/study/NCT04097145
- 33. Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, ESC/EACTS Scientific Document Group. 2021 ESC/EACTS guidelines for the management of valvular heart disease. European Heart Journal. 2021;43(7):561–632.
- 34. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP, Gentile F, ACC/AHA Joint Committee. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143(5):e72–e227.

Citation

Ibrahim, I., Naguib, T., Talaat, S., Roshdy, H. Cardiac Implantable Electronic Device Lead-Induced Tricuspid Regurgitation. *Zagazig University Medical Journal*, 2025; (5271-5281): -. doi: 10.21608/zumj.2025.418730.4142

Ibrahim, et al 5281 | Page