

https://doi.org/10.21608/zumj.2025.418313.4137

Volume 31, Issue 11 November. 2025

Manuscript ID:ZUMJ-2508-4137 DOI:10.21608/zumj.2025.418313.4137

ORIGINAL ARTICLE

Outcome of Management of Large Common Bile Duct Stones

Mohamed Suliman Ibrahim Alayeb^{*}, Mohamed Farouk Amin, Wael Salah El-din Mansi, Mohamed Adel Ahmed Saleh

General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt

*Corresponding author: Mohamed Suliman Ibrahim Alayeb

Email:

dr.moh.Alayeb@gmail.com

Submit Date 05-09-2025 Accept Date 06-10-2025

ABSTRACT

Background: Large common bile duct (CBD) stones (≥15 mm) are difficult to remove and require fragmentation if larger than 20 mm. ERCP, laparoscopic, percutaneous, or open surgery are available options depending on experience. Large or impacted stones often require open surgery, whereas ERCP with sphincterotomy, balloon dilatation, lithotripsy, or SpyGlass is less invasive. This study compared endoscopic and surgical treatment of large CBD stones.

Methods: A prospective cohort of 30 patients with CBD stones >1.5 cm (mean age 56.4 ± 10.1 years, 56.7% females) was studied between January 2024 and June 2025. ERCP was performed in 18 cases (60%), SpyGlass in 6 (20%), and surgery in 6 (20%; 13.3% open, 6.7% laparoscopic). Stone size was 15.7 ± 2.95 mm (ERCP), 14 ± 1.09 mm (SpyGlass), and 17.3 ± 3.62 mm (surgery). All patients underwent clinical, laboratory, and imaging assessments, with exclusion of malignancy or major contraindications.

Results: Stone size and CBD diameter changed significantly (p<0.001), with the greatest difference observed during operation. Surgery and SpyGlass groups had higher total and direct bilirubin levels than the ERCP group (p=0.02 and p=0.03, respectively). Surgical time was longest, SpyGlass intermediate, and ERCP shortest (p<0.001). Multiple stents were inserted more frequently with SpyGlass (p=0.0001). Hospital stay was longest after surgery and shortest after ERCP/SpyGlass (p=0.002). Pain and intraoperative blood loss were significantly greater during surgery (p<0.001). No deaths occurred.

Conclusions: ERCP proved effective and minimally invasive, with shorter operative time and hospitalization. SpyGlass was a safe alternative of moderate duration, whereas surgery, reserved for larger stones, involved longer operations, higher complication rates, and prolonged hospital stay.

Keywords: Common bile duct stones; ERCP; SpyGlass cholangioscopy; Surgical exploration; Stone clearance outcomes

INTRODUCTION

Stones larger than 15 mm are harder to remove, and those over 20 mm require fragmentation. A "difficult stone" may be defined by size, intrahepatic placement, barrel-shaped or impacted morphology, or comorbidities [1]. Stone extraction can be

complicated by distal strictures. Large CBD stones are defined as ≥15 mm with a stone-to-CBD ratio of 1.0, allowing for comparison to duct diameter [2, 3]. Primary CBD stones or secondary gallbladder stones can occur [4].

Alayeb, et al 5387 | Page

Transabdominal ultrasonography and MRCP are the most prevalent non-invasive preoperative diagnostics [5]. Approximately 15% of cholecystectomies explore the duct, and 65% of them remove CBD stones. Laparoscopic, endoscopic, percutaneous, and open methods are used sequentially or together. Preoperative ERCP followed by LC, LCBDE, and LC plus intraoperative ERCP (rendezvous technique) are the most popular methods. Available expertise, not proven superiority, drives choice [6].

CBD stones are difficult to treat despite laparoscopic cholecystectomy replacing open surgery. LCBDE reduces discomfort, shortens stay, and speeds recovery, but it requires advanced equipment, technical expertise, and carries risks such as bile duct injury [7]. Open CBDE remains useful for large stones, complex anatomy, unsuccessful endoscopic procedures. ERCP with sphincterotomy, established in the 1970s and widely adopted in the 1980s, became the norm for treating bile duct stones before and after cholecystectomy [8]. **ESGE** recommends endoscopic with papillary balloon sphincterotomy dilation first, followed by mechanical lithotripsy in cases of failure Cholangioscopy-assisted lithotripsy becoming safer and more successful, but only in specialized centres. Modern technologies like the SpyGlass system provide single-operator cholangioscopy with high-resolution real-time viewing fragment and retrieve large or impacted stones [10].

Laser electrohydraulic and lithotripsy fragmentation. improve stone lithotripsy Holmium: YAG laser precise, high-energy pulses to break stones into smaller pieces, decreasing tissue stress and boosting clearance rates [11]. Thus, modern CBD stone care uses a personalized combination of minimally invasive and advanced endoscopic procedures based on stone features, patient condition, and institutional expertise.

The aim of the study is to assess the outcome of endoscopic and surgical management of large CBD stones.

METHODS

This prospective cohort study was conducted at the Department of General Surgery, Faculty of Medicine, Zagazig University, between January 2024 and June 2025 under the ethical approval code IRB#: 67/27-Feb-2024.

It included 30 patients with large CBD stones (>1.5 cm), aged above 18 years, ASA I–III, of both genders.

Eighteen patients underwent ERCP; among them, 6 had balloon clearance only and 12 had balloon clearance with Dormia basket, with the largest stone size of 15.7 ± 2.95 mm. SpyGlass endoscopy was performed in 6 patients, where the largest stone size was 14 ± 1.09 mm. Surgery was done in 6 patients, including 4 open CBDE and 2 laparoscopic CBDE, with the largest stone size of 17.3 ± 3.62 mm.

Exclusion criteria included active pancreatitis, ASA IV-V, suspected CBD malignancy, pregnancy lactation, or contraindications to **ERCP** such gastrectomy, and relative contraindications to laparoscopy such as prior upper abdominal surgery or advanced cirrhosis.

Sample size was calculated assuming a mean operative time of 231.4 ± 69 minutes for open surgery versus 160.7 ± 67 minutes for endoscopic intervention, with 80% power and 95% CI, resulting in 30 cases.

All patients underwent detailed history taking, general examination including vital signs (heart rate, blood pressure, respiratory rate, and temperature), and calculation of body mass index. Local abdominal examination was also performed.

Laboratory investigations included complete blood count (RBCs, hemoglobin, WBCs, and platelets), blood group, blood glucose,

Alayeb, et al 5388 | Page

coagulation profile (PT, PTT, INR), liver function tests (AST, ALT, total and direct bilirubin), and renal function tests (creatinine and BUN).

Imaging assessment consisted of abdominal ultrasound using a Vivid S5 (GE Healthcare, USA) with a 5 MHz curved array probe, performed from the anterior superior iliac spine to the umbilicus with axial and longitudinal scans of the liver. MRCP was done with a 1.5 T MRI system using a phased-array body coil, while abdominal CT scan was performed with a 16-detector row scanner at 90, 120, and 140 kV.

Preoperatively, all patients fasted for 6 hours and received a single prophylactic antibiotic dose. All procedures were carried out under general anesthesia.

EndoscopicRetrograde Cholangiopancreatography (ERCP):

ERCP was performed using a side-viewing endoscope (TJF-145; Olympus, Tokyo, Japan) by a single endoscopist. Standard cannulation achieved was sphincterotome, and contrast was injected under fluoroscopy to access the CBD. Cholangiogram was obtained, and CBD and stone diameters were documented. A full sphincterotomy was performed, followed by balloon sphincteroplasty using a 5F balloontipped catheter (4 cm length, 180 cm total length). Stones were removed with a retrieval balloon or Dormia basket if balloon clearance failed. After extraction, a 7-Fr pigtail stent was placed for 2-3 weeks, followed by cholecystectomy. If ERCP failed, SpyGlass cholangioscopy was used (Fig. 1, 2).

SpyGlass Cholangioscopy:

SpyGlass was introduced via the duodenoscope to reach the distal CBD stone, with higher stones targeted sequentially. Laser lithotripsy or electrohydraulic mechanical lithotripsy was used to fragment stones for balloon or basket extraction. In poor surgical candidates, fully covered metal

stents were inserted for gallstone removal and prolonged drainage. Plastic stents were used for drainage and kept for 2–3 weeks before cholecystectomy. If SpyGlass failed, laparoscopic CBD exploration was performed.

Laparoscopic CBD Exploration (LCBDE):

Patients were placed in the French position with reverse Trendelenburg and slight left tilt. Standard port placement included two 10 mm ports (umbilical and epigastric), two 5 mm ports (right mid-clavicular and right mid-axillary), and an additional 5 mm port in the left mid-clavicular line. After Calot's triangle dissection, the cystic duct and artery were clipped and cut, leaving the gallbladder attached for retraction. CBD was identified, and a 1.5 cm incision was made with stay sutures. A 9.5 F flexible laparoscope (68 cm) visualized the duct. Stones were retrieved using stents, balloon dilation, Dormia basket, flushing, techniques. Intraoperative cholangiogram confirmed clearance before choledochotomy closure with 3-0 PDS sutures (Fig. 3).

Open CBD Exploration:

Open CBDE was done when laparoscopy failed or in cases of impacted stones. Porta hepatis exposure was achieved by lifting the round ligament and retracting the cystic duct. A 10-20 mm vertical choledochotomy was performed on the supraduodenal CBD. Stones were extracted with forceps or flushed with saline; impacted stones were fragmented and removed with a Dormia basket. The incision was closed with absorbable running sutures, and cholangiogram intraoperative confirmed clearance and suture integrity.

After the operation, all patients were monitored for ERCP- or surgery-related complications. They were kept nil per oral for 4 hours post-endoscopy and received antibiotics (extended in case of complications) and analgesics. Discharge

Alayeb, et al 5389 | Page

was given once patients were fit, with dietary advice and scheduled follow-up.

Statistical analysis

Statistical analysis was performed using SPSS version 25.0 (IBM, Armonk, NY, USA). Continuous variables were expressed as mean \pm SD and range, while categorical variables were shown as frequencies and percentages. Group comparisons for continuous data (ERCP, SpyGlass, Surgery) were done with one-way ANOVA, or Kruskal-Wallis test when assumptions were unmet. Categorical variables were compared using Chi-square or Fisher's exact test when expected counts were <5. A pvalue <0.05 was considered statistically significant.

RESULTS

The study included 30 participants with a mean age of 56.4 ± 10.1 years (range: 40-74). Females constituted 56.7% (n=17) and males 43.3% (n=13). Most participants resided in rural areas (83.3%, n=25) compared to urban areas (16.7%, n=5). Among the patients, endoscopic retrograde cholangiopancreatography with sphincterotomy, sphincteroplasty, and balloon clearance was performed in 9 cases (30%), with Dormia basket in 6 cases (20%), and with mechanical lithotripsy plus Dormia basket in 3 cases (10%). SpyGlass cholangioscopy was used in 6 cases (20%). Laparoscopic common bile duct exploration was performed in 2 cases (6.7%), while open exploration was done in 4 cases (13.3%) (Table 1).

Clinical data showed no significant difference in ASA classification across ERCP, SpyGlass, and Surgery groups (p=0.75). Common bile duct diameter differed significantly (p<0.001), being largest in Surgery (25.3 \pm 3.78 mm), followed by SpyGlass (20.7 \pm 1.03 mm) and ERCP (13.5 \pm 1.65 mm). Stone size also differed significantly (p<0.001), with the largest in Surgery (30.5 \pm 3.62 mm), then

SpyGlass (25.7 \pm 1.86 mm) and ERCP (17.7 \pm 1.41 mm). Stone clearance was achieved in all patients; in ERCP cases, half were cleared at the first attempt and half at the second. Total bilirubin showed a significant difference (p=0.02), highest in Surgery (6.9 \pm 0.8), followed by SpyGlass (6.0 \pm 0.3) and ERCP (5.28 \pm 1.1). Direct bilirubin was also significantly different (p=0.03), higher in SpyGlass (2.7 \pm 0.4) and Surgery (2.7 \pm 0.6) compared to ERCP (2.2 \pm 0.4). Table 2

Operative duration differed significantly (p<0.001), being longest in Surgery (151.7 \pm 11.7 min), followed by SpyGlass (102.5 ± 8.2 min) and ERCP (60 \pm 11.1 min). Conversion rates were not significant (p=0.1583); in ERCP, 8 cases converted to (6 successful, 2 SpyGlass requiring laparoscopic surgery), and 4 cases with impacted distal stones were converted directly to laparoscopic surgery. SpyGlass, 2 cases required laparoscopic conversion, while in laparoscopic surgery, 4 cases were converted to open surgery. First stent insertion showed a significant difference (p=0.0001), occurring in 50% of ERCP, 33.3% (n=9)(n=1)laparoscopic, and 50% (n=1) of open surgery patients. Second stent insertion was seen only in ERCP (50%, n=9). Third stent insertion was highest in SpyGlass (100%, n=8), followed by laparoscopic surgery (66.7%, n=2), and open surgery (50%, n=1), with none in ERCP. Length of stay differed significantly (p=0.002), being longest in Surgery (6 \pm 2.7 days), followed by ERCP $(2.17 \pm 1.2 \text{ days})$ and SpyGlass (2 ± 0.1) days). Return to work was also longest after Surgery, then SpyGlass, and shortest after ERCP. Mortality was absent in all groups. Table 3

Complication rates did not differ significantly among ERCP, SpyGlass, and Surgery (p=0.78), though Surgery had the highest rate (33.3%). Bile leak and wound infection occurred only in Surgery, while

Alayeb, et al 5390 | Page

bleeding was seen across groups and managed conservatively. Pain scores differed highly significantly (p<0.001); all ERCP and SpyGlass patients reported minimal pain (1–3), whereas Surgery

patients reported higher scores (3–4 and 6–7). Intraoperative blood loss also showed a highly significant difference (p<0.001), occurring exclusively in Surgery, affecting all 6 patients (100%). Table 4

Table 1: Demographic data among studied participants

		All patients (n=30)
Age (years)	Mean ± SD	56.4 ± 10.1
	Range	(40 - 74)
Sex (n. %)	Male	13 (43.35)
	Female	17 (56.7%)
Residence (n. %)	Rural	25 (83.3%)
	Urban	5 (16.7%)

Table 2: Clinical data among studied patients

Table 2: Clinical data among studied patients									
			E	Surgery	P-				
			(n	=18)		(n=6)	value		
		ST+SP + Balloon clearance	ST + SP + Dormia basket + Balloon clearance	ST + SP + ML + Dormia basket + Balloon clearance	SpyGlass: Laser + hydro				
Clinical data									
ASA	I								
(n. %)	II	6 (33.3%)			3 (50%)	2 (33.3%)			
	III	12 (66.7%)			3 (50%)	4 (66.7%)	0.75		
CBD	Mean	13.5±1.65			20.7±1.03	25.3±3.78	< 0.001		
diameter	±SD								
Stone size	Mean		17.7±1.41			30.5±3.62	< 0.001		
	±SD								
No. of stones	One	18 (100%)			4 (66.7%)	4 (66.7%)			
	Two	0 (0%)			2 (33.3%)	2 (33.3%)	0.03		
Stone	Yes	18 (100%)			6 (100%)	6 (100%)	-		
clearance	1 st		9 (50%)						
	attempt		9 (50%)						
	2 nd								
	attempt								
Session's no.	One		9 (50%)			-	-		
	session		9 (50%)						
	Two								
	sessions								
Lab Data									
Total bili	Total bilirubin		5.28±1.1			6.9±0.8	0.02		
Mean ± SD									
Direct bilirubin		2.2±0.4			2.7±0.4±	2.7±0.6	0.03		
Mean ± SD									

Alayeb, et al 5391 | Page

 Table 3: Peri-Operative data among studied patients

	ERCP (n=18)				Surgery (n=6)		P-value	
	Bal	-SP + loon rance	ST + SP + Dormia basket + Balloon clearance	ST + SP + ML + Dormia basket + Balloon clearance	SpyGlass: Laser + hydro	(II-	U)	
				Operative	data			
Duration (min) mean ± SD		60±11.1		102.5±8.2	151.7±11.7		<0.001	
					Lap	Open		
Conversion: No Yes		18 (60%) 12 (40%)		6 (75%) 2 (25%)	2 (33.33%) 4 (66.67%)	4 (100%) 0 (0%)	0.1583	
Stent inserti (n. %)								
1 st time stent insertion			9 (50%)		0 (0%)	1 (33.33%)	1 (50%)	
2 nd time stent insertion			9 (50%)		0 (0%)	0 (0%)	0 (0%)	0.0001*
3 rd time stent insertion		0 (0%)		8 (100%)	2 (66.67%)	1 (50%)		
Post-Operati data	ive							
LOS (days mean ± SE		2.17±1.2		2±0.1	6±2.7		0.003	
Return to wo (days) mean SD	ı ±			18.5±12.6	21.5±11.8		0.04	
Mortality (n.	%)	%) 0 (0%)		0 (0%)	0 (0	%)	-	

Alayeb, et al 5392 | Page

Table 4: Complications among studied patients

		El	Surgery	P-		
		(n	(n=6)	value		
	ST+SP + Balloon clearance	ST + SP + Dormia basket + Balloon clearance	ST + SP + ML + Dormia basket + Balloon clearance	SpyGlass: Laser + hydro		
Complication (n. %)		4 (22.2%)		1 (16.7%)	2 (33.33%)	0.78
Bleeding	2 (11.1%)			0 (0%)	0 (0%)	0 (0%)
Bile leak	0 (0%)			0 (0%)	1 (16.7%)	0.13
Pancreatitis	2 (11.1%)			1 (16.7%)	0 (0%)	0.6
Wound infection	0 (0%)			0 (0%)	1 (16.7%)	0.13
Pain score:						
1-3		18 (100%)		6 (100%)	0 (0%)	
3-4	0 (0%)			0 (0%)	2 (33.3%)	
6-7	0 (0%)			0 (0%)	4 (66.7%)	<0.001
Intraoperative Blood loss (50 – 150 ml)	0 (0%)			0 (0%)	6 (100%)	<0.001

Figure 1: Balloon Sphincterotomy.

Alayeb, et al 5393 | Page

Figure 2: Laser lithotripsy by Spygalss Choledocoscope

Figure (3): Open CBDE (The CBD was taken over a sling).

Alayeb, et al 5394 | Page

DISCUSSION

Common bile duct (CBD) stones are a major cause of biliary obstruction, typically presenting with abdominal pain, jaundice, or cholangitis, and require prompt intervention to prevent serious complications [12]. Large or difficult stones remain challenging due to both anatomical and patient-related factors, although advances in endoscopic techniques have improved clearance rates and reduced adverse events (Tringali et al., 2021a). Endoscopic retrograde cholangiopancreatography (ERCP) with sphincterotomy or balloon dilation is now considered the first-line approach, preferred over surgery due to its lower morbidity and mortality rates [13].

This prospective cohort study aimed to evaluate the outcomes of endoscopic and surgical management of large CBD stones. It was conducted at the Department of General Surgery, Faculty of Medicine, Zagazig University, from May 2024 to May 2025.

The study included 30 patients with a mean age of 56.4 ± 10.1 years (range 40–74), of whom 56.7% were female (n=17) and 43.3% were male (n=13). Most participants were from rural areas (83.3%, n=25), while 16.7% (n=5) were urban residents. These findings are consistent with those of Li et al. (2023) [14], who reported a mean age of 57.5 ± 20.8 years for choledocholithiasis and 63.0 ± 17.9 years for cholangitis, with comprising 63.4% females of choledocholithiasis cases and 48.8% of cholangitis cases. However, unlike our study, 92% of their cases were discharged from urban hospitals, which included younger, non-white, and insured patients, with no significant urban-rural differences in comorbidities or weekend admissions. Shelton et al. (2012) [15] also found that 81% of 111,021 patients choledocholithiasis resided in urban areas compared with 19% in rural areas, with

urban patients more likely to undergo endoscopic therapy (87.7% vs. 82.0%, p<0.05), while rural patients were more frequently managed surgically (10.5% vs. 4.9%, p<0.05). In contrast, our cohort was predominantly rural. Furthermore, Lisotti et al. (2025) [16] identified age >63 years (OR 3.06, p<0.001), male gender (OR 2.54, p=0.009), liver function test abnormalities (OR 2.62, p=0.003), and bile duct dilation 2.46, p=0.005) independent (OR as predictors of CBD stones, whereas our population demonstrated a younger mean age and a female predominance.

In our cohort, ERCP was the most frequently used intervention (60%, n=18). sphincterotomy, The combination of sphincteroplasty, and balloon clearance was the most successful technique (30%, n=9). ERCP with Dormia basket was used in 20% (n=6) and mechanical lithotripsy in 10% SpyGlass cholangioscopy (n=3).performed in 20% (n=6), while surgery was required in 20% (laparoscopic CBDE 6.7%, n=2; open CBDE 13.3%, n=4). The predominance of ERCP in our series aligns with prior evidence supporting its minimally invasive allowing nature, sphincterotomy and stone extraction using balloons or baskets, with high success and safety [17]. SpyGlass was reserved for complex or difficult stones, consistent with previous studies highlighting its value in direct visualization and fragmentation of large or impacted stones. Surgical approaches were required for very large stones, altered anatomy, or marked ductal dilation, as also described by Almadi et al. (2012), Christoforidis et al. (2014), and Dasari et al. (2013) [18–20].

There was no significant difference in ASA classification among the ERCP, SpyGlass, and surgery groups (p=0.75). However, CBD diameter and stone size were significantly greater in the surgery group $(25.3 \pm 3.78 \text{ mm}; 30.5 \pm 3.62 \text{ mm})$, followed

Alayeb, et al 5395 | Page

by SpyGlass (20.7 \pm 1.03 mm; 25.7 \pm 1.86 mm), and smallest in ERCP (13.5 \pm 1.65 mm; 17.7 ± 1.41 mm). Complete stone clearance was achieved in all cases, with half of ERCP patients cleared on the first attempt and the remainder on the second. These results are consistent with Sayed et al. (2025) [21], who reported no significant difference in ASA scores or stone counts between ERCP-first and surgery-first groups, and Wu et al. (2024) [22], who found no significant ASA differences between laparoscopic and endoscopic management. Our findings also support those of Obata et al. (2021) [23], who demonstrated that bile ducts >14 mm in diameter were associated with reduced success of balloon-assisted ERCP (OR 0.04, p=0.018).

The larger CBD diameters observed in the surgery group likely reflect prolonged obstruction and larger impacted stones, which lead to progressive ductal dilation. Such dilation reduces the effectiveness of endoscopic tools, thereby favoring surgical exploration. This mechanism has been similarly proposed by Haixing Fang et al. (2025), Ji et al. (2022), and Kamuni et al. (2024) [24–26]. Conversely, the smaller ducts in the ERCP and SpyGlass groups likely indicate less severe obstruction, facilitating successful endoscopic clearance without conversion.

bilirubin levels Mean total differed significantly among the groups (p=0.02), being highest in the surgery group, intermediate in SpyGlass, and lowest in ERCP. Direct bilirubin also varied significantly (p=0.03), with higher means in SpyGlass and surgery compared to ERCP. Fang et al. (2025) [24] reported no significant bilirubin variation different minimally invasive techniques, contrasting with our findings. The elevated direct bilirubin levels in our cohort likely reflect the degree and duration

obstruction, as higher values correlate with acute obstruction, supporting the need for urgent endoscopic intervention [27–29].

Operative duration also differed significantly (p<0.001), being longest in surgery, intermediate in SpyGlass, and shortest in ERCP. Although conversion rates were not statistically significant, 8 ERCP cases required conversion to SpyGlass (6 successful, 2 laparoscopic), 4 ERCP cases proceeded directly to laparoscopic surgery, 2 SpyGlass cases converted to laparoscopy, and 4 laparoscopic procedures required conversion to open surgery. Aloysius et al. (2023) [30] analyzed >14,000 ERCPs and found perforation-associated procedures lasted significantly longer (60.1 \pm 29.9 min) than uncomplicated ones $(40.3 \pm 23.5 \text{ min},$ supporting p < 0.001), association the prolonged between duration and complications. SpyGlass procedures were inherently longer due to direct visualization and fragmentation steps [31]. The higher conversion rate in surgical cases likely reflects intraoperative challenges such as adhesions or obscured anatomy [32].

Stent insertion differed markedly among groups (p=0.0001): first stents were most common in ERCP, less frequent in surgery, and absent in SpyGlass; second stents occurred only in ERCP, while third stents were most frequent in SpyGlass, followed by laparoscopic and open surgery. Lara-Orozco et al. (2024) [33] similarly reported greater stent use in ERCP compared to SpyGlass, with multiple reinterventions often required in ERCP but only a single stenting case in SpyGlass.

Hospital stay differed significantly (p=0.002), being longest after surgery, intermediate in SpyGlass, and shortest in ERCP. Return to work followed a similar trend. No mortality occurred. Rogers et al. (2010) [34] reported median hospital stays of 6 days after ERCP versus 9 days after surgery (p<0.05), consistent with our results.

Alayeb, et al 5396 | Page

Similarly, Lyu et al. (2019) [35] found no significant morbidity differences between ERCP and laparoscopic CBD exploration (LCBDE) [36]. The shorter hospital stays observed in ERCP and SpyGlass reflect their minimally invasive nature [37,38]. However, De Silva et al. (2022) [39] reported the opposite in 671 patients, with (n=578)showing LCBDE complications than ERCP (n=93), where endoscopy had the highest rates of minor major (27.1%),non-biliary (39.6%),(29.2%), and biliary (8.3%) complications (p<0.001).

In our study, there was no significant difference in overall complication rates (p=0.78), although surgery had the highest rate (33.3%) due to bile leakage and wound infection. Two ERCP-related bleeding cases were managed conservatively. Pain scores differed significantly (p<0.001), being lowest in ERCP and SpyGlass (1-3) and highest in surgery (3–7). Intraoperative blood loss was significant (p<0.001), occurring exclusively in surgical cases (100%, n=6). A meta-analysis of 14 RCTs $(n\approx 2,181)$ by Lan et al. (2023) [40] reported higher bile leakage rates with LC-LCBDE (RR 4.52, 95% CI 2.19-9.31), but lower risks of hemorrhage (RR 0.18, 95% CI 0.07-0.42), postoperative pancreatitis (RR 0.25, 95% CI 0.13-0.46), and cholangitis (RR 0.17, 95% CI 0.05–0.67), partly aligning with our results. Mechanistically, the invasiveness of each procedure explains the observed complication patterns: bile leak and intraoperative bleeding in surgery arise from ductal incision and dissection [41], SpyGlass carries a higher cholangitis risk due to prolonged ductal manipulation and irrigation [42], and ERCP predisposes to pancreatitis from ductal trauma and contrast injection [38,43].

CONCLUSION

Our study showed that endoscopic approaches, especially ERCP, were effective

and less invasive for large CBD stones, with shorter operative time and hospital stay. ERCP carried a higher but not statistically significant risk of pancreatitis. SpyGlass offered a safe alternative with moderate duration. Surgery, used mainly for larger CBD stones, required longer operative times, had higher complication rates, and prolonged hospital stay. These results emphasize tailoring treatment to patient condition, stone features, and available expertise.

Conflicts of Interests: The authors declare that they have no competing interests.

Financial disclosure: no funds.

Availability of Data and Material: All data generated or analyzed during this study are available from the corresponding author upon reasonable request.

Authors' Contributions: Not applicable. **REFERENCES**

- 1. Doshi B, Yasuda I, Ryozawa S, et al. Current endoscopic strategies for managing large bile duct stones. Dig Endosc 2018; 30(1): 59-66.
- 2. Radwan MI, Emara MH, Ibrahim IM, et al. Large balloon dilatation versus mechanical lithotripsy after endoscopic sphincterotomy in the management of large common bile duct stones in cirrhotic patients. J Clin Gastroenterol 2019; 53(4): 150-6.
- 3. Wongkanong C, Patumanond J, Ratanachuek T, et al. Common bile duct stone related parameters and their potential prognostic values for stone extraction requiring endoscopic papillary large balloon dilation. JGH Open 2023; 7(1): 16-23.
- 4. Gad EH, Zakaria H, Kamel Y, et al. Surgical (open and laparoscopic) management of large difficult CBD stones after different sessions of endoscopic failure: a retrospective cohort study. Ann Med Surg 2019; 43(1): 52-63.
- 5. Palwa AR, Nisar U, Shafique M, et al. The accuracy of transabdominal ultrasound in detection of choledocholithiasis keeping magnetic resonance cholangiopancreatography as gold standard. Pak Armed Forces Med J 2022; 72(2): 485-89.
- 6. Cianci P, Restini E. Management of cholelithiasis with choledocholithiasis: endoscopic and surgical approaches. World J Gastroenterol 2021; 27(28): 1-20.
- 7. Marks B, Al Samaraee A. Laparoscopic exploration of the common bile duct: a systematic review of the published evidence over the last 10 years. Am Surg 2021; 87(3): 404-18.

Alayeb, et al 5397 | Page

- 8. Nassar AH, Ng HJ, Katbeh T, et al. Conventional surgical management of bile duct stones: a service model and outcomes of 1318 laparoscopic explorations. Ann Surg 2022; 276(5): 493-501.
- 9. Manes G, Paspatis G, Aabakken L, et al. Endoscopic management of common bile duct stones: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy 2019; 51(5): 472-91.
- 10. Sha Y, Wang Z, Tang R, et al. Modern management of common bile duct stones: breakthroughs, challenges, and future perspectives. Cureus 2024; 16(12): 1-9.
- 11. Amaral AC, Hussain WK, Han S. Cholangioscopyguided electrohydraulic lithotripsy versus laser lithotripsy for the treatment of choledocholithiasis: a systematic review. Scand J Gastroenterol 2023; 58(10): 1213-20.
- 12. Cianci P, Restini E. Management of cholelithiasis with choledocholithiasis: endoscopic and surgical approaches. World J Gastroenterol 2021; 27(28): 1-20.
- 13. Meng K, Zhang Dy, Chen Dx, et al. Large common bile duct stones in high-risk elderly patients: immediate endoscopic stone removal or elective stone removal? A single-center retrospective study. BMC Gastroenterol 2023; 23(1): 1-9.
- 14. Li S, Guizzetti L, Ma C, et al. Epidemiology and outcomes of choledocholithiasis and cholangitis in the United States: trends and urban-rural variations. BMC Gastroenterol 2023; 23(1): 1-12.
- 15. Shelton J, Kummerow K, Phillips S, et al. An urbanrural blight? Choledocholithiasis presentation and treatment. J Surg Res 2012; 173(2): 193-7.
- Lisotti A, Togliani T, Masciangelo G, et al. Risk factors for common bile duct stones in patients with previous cholecystectomy: a multicenter prospective proof-of-concept study. J Clin Med 2025; 14(13): 1-13.
- 17. Ayoub F, Yang D, Draganov PV. Cholangioscopy in the digital era. Transl Gastroenterol Hepatol 2018; 3(1): 82-92.
- 18. Dasari BV, Tan CJ, Gurusamy KS, et al. Surgical versus endoscopic treatment of bile duct stones. Cochrane Database Syst Rev 2013; 1(12): 1-12.
- 19. Christoforidis E, Vasiliadis K, Tsalis K, et al. Factors significantly contributing to a failed conventional endoscopic stone clearance in patients with difficult choledecholithiasis: a single-center experience. Diagn Ther Endosc 2014; 1(1): 1-7.
- Almadi MA, Barkun JS, Barkun AN. Management of suspected stones in the common bile duct. CMAJ 2012; 184(8): 884-92.
- 21. Sayed MM, Abdelmohsen AS, Ibrahim M, et al. Single-stage laparoendoscopic management of cholecystocholedocholithiasis: a retrospective study comparing starting with ERCP versus with

- laparoscopic cholecystectomy. Ann Hepatobiliary Pancreat Surg 2025; 29(1): 55-61.
- 22. Wu PH, Yu MW, Chuang SC, et al. Comparison of laparoscopic common bile duct exploration plus cholecystectomy and endoscopic retrograde cholangiopancreatography followed by laparoscopic cholecystectomy for elderly patients with common bile duct stones and gallbladder stones. J Gastrointest Surg 2024; 28(5): 719-24.
- 23. Obata T, Tsutsumi K, Kato H, et al. Balloon enteroscopy-assisted endoscopic retrograde cholangiopancreatography for the treatment of common bile duct stones in patients with Roux-en-Y gastrectomy: outcomes and factors affecting complete stone extraction. J Clin Med 2021; 10(15): 1-13.
- 24. Fang H, Chen W, Wu Z, et al. Comparative analysis of minimally invasive approaches for gallbladder and common bile duct stones: combined endoscopic techniques vs ERCP with laparoscopic cholecystectomy. Front Surg 2025; 12(1): 1-13.
- 25. Ji X, Yang Z, Ma SR, et al. New common bile duct morphological subtypes: risk predictors of common bile duct stone recurrence. World J Gastrointest Surg 2022: 14(3): 236-46.
- 26. Kamuni A, Kumar L, Giri S, et al. Predictors of failure of endoscopic retrograde cholangiopancreatography in clearing bile duct stones during index procedure: a prospective study. Arq Gastroenterol 2024; 61(1): 1-7.
- 27. Gillaspie DB, Davis KA, Schuster KM. Total bilirubin trend as a predictor of common bile duct stones in acute cholecystitis and symptomatic cholelithiasis. Am J Surg 2019; 217(1): 98-102.
- 28. Coucke EM, Akbar H, Kahloon A, et al. Biliary obstruction. Europe PMC 2019; 1(1): 1-5.
- 29. Sadek M, Mohammed MM, Hendy MM, et al. Prediction of common bile duct stones in acute cholecystitis patients at time of hospital admission. Egypt J Surg 2023; 42(2): 433-8.
- 30. Aloysius M, Goyal H, Nikumbh T, et al. Endoscopic retrograde cholangiopancreatography-related early perforations: a study of effects of procedure duration, complexity, and endoscopist experience. World J Gastrointest Endosc 2023; 15(11): 1-9.
- 31. Barreras González JE, Torres Peña R, Ruiz Torres J, et al. Endoscopic versus laparoscopic treatment for choledocholithiasis: a prospective randomized controlled trial. Endosc Int Open 2016; 4(11): 1188-
- 32. Xu B, Wang YX, Qiu YX, et al. Risk factors and consequences of conversion to open surgery in laparoscopic common bile duct exploration. Surg Endosc 2018; 32(12): 4990-8.
- 33. Lara-Orozco U, Ortiz-Higareda V, Martínez-Ordaz JL, et al. Experience of endoscopy versus surgery as

Alayeb, et al 5398 | Page

- initial management of chronic pancreatitis. Rev Gastroenterol Mex 2024; 89(4): 491-497.
- 34. Rogers SJ, Cello JP, Horn JK, et al. Prospective randomized trial of LC + LCBDE vs ERCP/S + LC for common bile duct stone disease. Arch Surg 2010; 145(1): 28-33.
- 35. Lyu Y, Cheng Y, Li T, et al. Laparoscopic common bile duct exploration plus cholecystectomy versus endoscopic retrograde cholangiopancreatography plus laparoscopic cholecystectomy for cholecystocholedocholithiasis: a meta-analysis. Surg Endosc 2019; 33(10): 3275-86.
- 36. Sandha J, Veldhuyzen van Zanten S, Sandha G. The safety and efficacy of single-operator cholangioscopy in the treatment of difficult common bile duct stones after failed conventional ERCP. J Can Assoc Gastroenterol 2018; 1(1): 181-90.
- 37. Zhou XD, Chen QF, Zhang YY, et al. Outcomes of endoscopic sphincterotomy vs open choledochotomy for common bile duct stones. World J Gastroenterol 2019; 25(4): 1-14.
- 38. Ang TL, Kwek ABE. Safety and efficacy of SpyGlass cholangiopancreatoscopy in routine clinical practice in a regional Singapore hospital. Singapore Med J 2019; 60(10): 538-44.

- 39. De Silva HM, Howard T, Bird D, et al. Outcomes following common bile duct exploration versus endoscopic stone extraction before, during and after laparoscopic cholecystectomy for patients with common bile duct stones. HPB (Oxford) 2022; 24(12): 2125-33.
- 40. Lan WF, Li JH, Wang QB, et al. Comparison of laparoscopic common bile duct exploration and endoscopic retrograde cholangiopancreatography combined with laparoscopic cholecystectomy for patients with gallbladder and common bile duct stones: a meta-analysis of randomized controlled trials. Eur Rev Med Pharmacol Sci 2023; 27(10): 1-19.
- 41. Moghul F, Kashyap S. Bile duct injury. Europe PMC 2019; 1(1): 1-6.
- 42. Yodice M, Choma J, Tadros M. The expansion of cholangioscopy: established and investigational uses of SpyGlass in biliary and pancreatic disorders. Diagnostics 2020; 10(3): 1-11.
- 43. Yang QS, Zhang M, Ma CS, et al. Analysis of risk factors for bile leakage after laparoscopic exploration and primary suture of common bile duct. World J Gastrointest Surg 2025; 17(3): 1-11.

Citation

Ibrahim Alayeb, M., mogahed, M., Mansy, W., Ahmed Saleh, M. Outcome of Management of Large Common Bile Duct Stones. *Zagazig University Medical Journal*, 2025; (5387-5399): -. doi: 10.21608/zumj.2025.418313.4137

Alayeb, et al 5399 | Page