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ABSTRACT 
Background: Maternal nutrition during the perinatal period is a 

critical determinant of fetal development, influencing organogenesis 

and tissue differentiation. Adequate nutrient supply supports the 

proper formation of organ systems, including skeletal muscle, which 

plays essential roles in locomotion, posture, metabolism, and growth. 

Skeletal muscle development begins early in embryogenesis and 

continues through the perinatal stage via tightly regulated processes of 

myogenesis, differentiation, and growth that are highly sensitive to the 

intrauterine environment. Maternal malnutrition during pregnancy or 

lactation, whether manifested as protein deficiency, excessive fat 

intake, or a combination of both, can profoundly disrupt skeletal 

muscle development in offspring. These nutritional imbalances reduce 

muscle mass and alter fiber composition and diameter, resulting in 

impaired metabolic capacity, weaker contractile function, a great risk 

of obesity, resistance to insulin, and metabolic disorders in offspring. 

This review aimed to provide an overview of the structural changes 

taking place in the skeletal muscles of offspring following maternal 

exposure to either low-protein or high-fat diet during pregnancy and 

lactation. 

Conclusion: Optimal Perinatal maternal nutrition is pivotal for 

skeletal muscle development, and malnutrition can compromise 

myogenesis and metabolic health. The need for focused dietary 

strategies during pregnancy and lactation is highlighted by the 

Developmental Origins of Health and Disease (DOHaD) framework, 

which suggests that early nutritional problems may predispose 

offspring to long-term musculoskeletal and metabolic diseases. 

Keywords: Perinatal maternal malnutrition; Skeletal muscle 

development; Protein deficiency; High-fat diet. 

INTRODUCTION 

renatal and the early postnatal periods 

are critical windows for tissue 

differentiation and organogenesis, 

during which cells undergo rapid growth 

and maturation. Adverse conditions during 

these stages, such as poor maternal 

nutrition or metabolic stress, can disrupt 

developmental programming and lead to 

permanent alterations in organ structure 

and function. As emphasized by the 

DOHaD framework, such early-life 

influences may significantly affect adult 

health, increasing susceptibility to chronic 

diseases later in life [1,2]. 

 A balanced maternal diet during 

pregnancy and lactation is essential for 

normal skeletal muscle development in the 

fetus. Adequate nutrient supply supports 

myoblast proliferation, differentiation, and 

protein synthesis, ensuring proper fiber 

number, type composition, and growth. In 

contrast, nutritional imbalances can impair 

these processes, leading to reduced muscle 
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mass, altered fiber characteristics, and 

compromised metabolic function in 

offspring. Numerous studies highlight the 

strong influence of maternal nutrition on 

intrauterine skeletal muscle development, 

underscoring its importance for long-term 

musculoskeletal and metabolic health [3-

5].  

Malnutrition is increasingly recognized as 

a major global health concern, particularly 

in densely populated and underdeveloped 

regions. While it was once primarily 

attributed to poverty, food scarcity, and 

limited access to nutritious diets, the issue 

has become more complex in recent 

decades with the proliferation and 

aggressive marketing of inexpensive, 

energy-dense, nutrient-poor foods such as 

fast food and junk food. Recent evidence 

indicates that nearly half of women of 

reproductive age experience malnutrition 

during pregnancy. Importantly, perinatal 

maternal malnutrition whether due to a 

low-protein diet, a high-fat diet, or a 

combination of both has been shown to 

induce structural alterations in the skeletal 

muscles of offspring [6-8] . 

A maternal low-protein diet lowers amino 

acid levels in the fetus, leading to poor 

growth, small birth-weight, and impaired 

development of skeletal muscles. These 

early deficits may persist into later life, 

increasing the risk of reduced muscle 

function and metabolic disorders [9,10].  

In developed nations, obesity and 

associated metabolic diseases have 

become epidemics, with children seeing 

the fastest rate of rise. Exposure to 

unfavorable intrauterine settings, 

especially an increased food supply during 

development, can result in early-onset 

metabolic problems, according to evidence 

from human studies. Within the 

framework of DOHaD, such intrauterine 

overnutrition can permanently alter 

metabolic programming, affecting insulin 

sensitivity, adiposity, and energy balance. 

The importance of maternal nutrition in 

determining long-term health outcomes is 

highlighted by these early-life changes, 

which raise a person's risk of obesity, type 

2 DM, and cardiovascular disease later in 

life [11,12]. Further, experimental animal 

models show that perinatal high-fat diets 

increase intramuscular lipid accumulation, 

trigger inflammation, disrupt 

mitochondrial morphology, and promote 

fiber-type shifts from oxidative to 

glycolytic, impairing glucose handling 

[13]. 

It was found that, high–fat diet 

consumption or cafeteria diet, throughout 

gestational and lactational period 

promoted increased intramuscular lipid 

accumulation in cross-sectioned areas of 

offspring skeletal muscles [14].  

The purpose of this review was to clarify 

the structural changes in the skeletal 

muscles of offspring following maternal 

exposure to either a low-protein (LP) diet 

or high-fat (HF) diet through pregnancy 

and lactation. 

Anatomy of skeletal muscle  

Skeletal muscle, a striated tissue 

comprising about 40% of human body 

weight, is distributed superficially and 

primarily attached to bones. Each muscle 

functions as an organ composed of fibers, 

connective tissue, nerves, and blood 

vessels. Skeletal muscle is highly 

vascularized and innervated to meet its 

metabolic and contractile demands. Each 

fiber receives input from a somatic motor 

neuron, while accompanying arteries, 

veins, and nerves branch through the 

epimysium to form capillary networks 

around the fibers [15]. Structurally, the 

whole muscle is covered by a connective 

tissue sheath called the epimysium. Within 

the muscle, bundles of muscle fibers called 

fascicles, and each fascicle is surrounded 

by perimysium and contains individual 

muscle fibers, each enveloped by 

endomysium. These connective tissue 

layers extend beyond the muscle belly to 

form tendons or aponeuroses, which 

anchor to the periosteum of bones. Muscle 

contraction generates tension that is 

transmitted through these layers to the 

tendon, enabling skeletal movement [16] 
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[Fig. 1]. The hierarchical arrangement of 

connective tissue layers (endomysium, 

perimysium, epimysium) ensures 

mechanical strength and coordinated 

contraction. These structural layers are 

also critical targets of pathological 

remodeling under malnutrition, as collagen 

deposition and fibrosis within these 

sheaths have been consistently reported in 

offspring exposed to maternal LP or HF 

diets [17].  

 
Fig. (1): A diagram of skeletal muscle 

shows three connective tissue layers: 

endomysium around individual fibers, 

perimysium around fascicles, and 

epimysium surrounding the entire muscle. 

These layers merge at the muscle end to 

form a tendon that attaches to bone. Blood 

vessels supply the fibers [16]. 

Histology of skeletal muscle 

Skeletal muscle fibers are elongated, 

tubular, and striated cells with multiple 

peripheral nuclei, primarily composed of 

myofibrils. Each fiber is enclosed by the 

sarcolemma surrounded externally by a 

specialized basement membrane composed 

of a basal lamina and reticular lamina 

beneath which lies the sarcoplasm. The 

basal lamina links directly to the 

sarcolemma, while the reticular lamina, 

rich in collagen, connects to the 

endomysium; together they support muscle 

integrity, growth, and regeneration [18]. 

Myofibrils occupy 80–90% of muscle fiber 

volume and are built from myofilaments 

thick (myosin) and thin (actin) whose 

arrangement produces the characteristic 

light (I bands) and dark (A bands) that give 

skeletal muscle its striated appearance. The 

thick filaments form the A-band, with the 

central H-zone containing only thick 

filaments and the M-line linking myosin 

tails. The thin filaments define the I-band 

and are associated with regulatory 

proteins, tropomyosin and troponin, 

controlling contraction. The Z-line in the I-

band connects thin filaments of adjacent 

sarcomeres. The sarcomere is the segment 

between Z-lines being the structural and 

functional unit of skeletal muscle. Each 

sarcomere contains a full A-band and 

halves of I-bands, and coordinated sliding 

of actin over myosin shortens myofibrils 

and the muscle fiber as a whole (Fig.2) 

[16,19].  
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Fig. (2): A diagram showing the 

sarcomere of skeletal muscle fiber [19]. 

Myofibrils are surrounded by the 

sarcoplasmic reticulum (SR), which stores 

calcium ions and expands into terminal 

cisternae. Transverse tubules (T-tubules), 

formed by sarcolemma invaginations 

between terminal cisternae, create triads 

that transmit action potentials from the 

fiber surface, triggering calcium release 

and contraction via troponin binding. The 

sarcoplasm contains numerous elongated 

mitochondria between myofibrils, a small 

Golgi complex near the nucleus, scattered 

ribosomes, and inclusions such as 

glycogen granules, myoglobin, and 

lipofuscin pigments (Fig. 3) [16, 19]. At 

the microscopic level, sarcomere 

organization and mitochondrial density 

determine muscle contractile and 

metabolic efficiency. Disruption of these 

ultrastructural features such as fragmented 

Z-lines, swollen mitochondria, and 

decreased desmin expression serves as a 

hallmark of nutritional myopathy in 

offspring subjected to maternal 

malnutrition [20].  
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Fig. (3): Diagram of skeletal muscle fibers 

showing long cylindrical fibers composed 

of myofibril bundles surrounded by 

mitochondria and sarcoplasmic reticulum. 

The zoomed view highlights a T-tubule, an 

invagination of the sarcolemma between 

terminal cisternae [16]. 

Development of skeletal muscles 

Skeletal muscles of the head, trunk, and 

limbs arise from somitomeres and somites, 

derivatives of the paraxial mesoderm. By 

the third week, the paraxial mesoderm 

segments into somitomeres from head to 

tail. Cranial somitomeres form 

mesenchyme that contributes to 

craniofacial muscles (with neural crest 

cells). From the occipital region caudally, 

somitomeres condense into paired somites, 

reaching 42–44 pairs by week five; some 

regress, while others form the axial 

skeleton [21]. Each somite differentiates 

into a sclerotome (vertebrae, ribs, sternum) 

and a dermomyotome, which gives rise to 

the myotome (skeletal muscles) and 

dermatome (dermis) (Fig. 4) [22]. 

Myotomal mesoderm gives rise to 

myoblasts, which elongate and fuse into 

multinucleated myotubes. Myotubes 

synthesize actin, myosin, and other 

proteins, forming myofilaments and 

myofibrils. Mature muscle fibers arise as 

nuclei shift peripherally, and bundles of 

fibers form muscles attached to skeletal 

elements [22]. Maternal malnutrition 

interferes with these tightly regulated 

stages, reducing myoblast proliferation, 

delaying differentiation, and impairing 

myotube fusion. Consequently, fewer 

mature fibers and smaller fiber diameters 

are observed in affected offspring [23]. 
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Fig. (4): A diagram showing subdivisions 

of the somite [22]. 

Structural Alterations in The Skeletal 

Muscles of the Offspring Induced by 

Maternal Low-Protein Diet during The 

Perinatal Period 

1. Overview 

Epidemiological and experimental 

evidence demonstrates that maternal low-

protein (LP) intake during pregnancy and 

lactation adversely affects skeletal muscle 

development in offspring, predisposing 

them to metabolic disorders in later life 

[24]. Protein restriction limits the fetal 

amino acid supply, leading to low birth 

weight, reduced muscle fiber number, and 

altered stem cell activity [10]. Offspring 

nursed by LP-fed dams exhibit lower body 

and muscle mass, smaller fiber cross-

sectional area, and persistent structural 

deficits even after post-weaning nutritional 

normalization [25]. 

2. Structural and Ultrastructural 

Alterations 

Experimental models have shown that 

maternal LP diets disrupt skeletal muscle 

morphology, with offspring displaying 

sparse myofibrils, disorganized Z-lines, 

and delayed sarcomere maturation [26, 

27]. These structural abnormalities are 

accompanied by mitochondrial swelling, 

fragmentation, and reduced oxidative 

enzyme activity, collectively impairing 

contractile efficiency. Prolonged exposure 

results in mitochondrial dysfunction, 

decreased mtDNA content, and 

downregulation of oxidative 

phosphorylation–related genes [9, 28]. In 

parallel, defective Akt–mTOR signaling, 

impaired insulin-stimulated protein 

synthesis, and diminished glycogen 

storage contribute to smaller muscle fibers 

and reduced contractile mass (Fig. 5) [29]. 

 

3. Histopathological Changes and 

Oxidative Stress 

Perinatal protein restriction induces 

pronounced histological alterations in 

offspring skeletal muscles, characterized 

by thin, disorganized, and separated fibers, 

poorly defined striations, nuclear pyknosis, 

vascular congestion, and cellular 

infiltration [25]. LP exposure during 

critical developmental windows disrupts 

oxidative homeostasis and repair 

mechanisms, increasing vulnerability to 

oxidative stress. Elevated reactive oxygen 

species (ROS) and malondialdehyde 

(MDA) levels confirm enhanced lipid 

peroxidation and cellular damage [9]. 
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4. Fibrosis and Extracellular Matrix 

Remodeling 

Maternal LP diets also promote collagen 

accumulation and fibrosis in offspring 

skeletal muscles, attributed to impaired 

myogenesis and chronic low-grade 

inflammation. These processes hinder 

muscle regeneration and drive extracellular 

matrix (ECM) remodeling [29, 30]. 

Furthermore, significant glycogen 

depletion observed in LP-exposed muscles 

reflects defective insulin signaling and 

impaired glucose utilization [31]. 

5. Cytoskeletal Integrity and Desmin 

Expression 

Desmin, the major intermediate filament 

protein in skeletal and cardiac muscles, 

preserves myofibrillar alignment by 

linking adjacent Z-discs and connecting 

the contractile apparatus to the 

sarcolemma, nucleus, and organelles. 

Desmin deficiency causes multisystem 

myopathies characterized by fibrosis, 

calcification, and structural instability [32]. 

Consistently, reduced desmin expression 

has been reported in LP diet–exposed 

offspring, correlating with compromised 

muscle architecture and impaired 

regenerative capacity [33]. 

 
Fig. (5): Maternal low-protein diet reduces skeletal muscle protein synthesis and mass via the 

akt-mTOR pathway in adult rats [29]. 
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Graphical abstract illustrating the effect of maternal Low-Protein diet on offspring skeletal 

muscle 

Structural Alterations in The Skeletal 

Muscles of the Offspring Induced by 

Maternal High-Fat Diet during The 

Perinatal Period  

1. Overview 

Obesity and related metabolic disorders 

are increasing globally, particularly among 

younger populations. Emerging evidence 

indicates that adverse intrauterine 

environments, including maternal 

overnutrition, contribute to early-onset 

metabolic diseases in offspring [13]. 

Maternal obesity during conception and 

pregnancy elevates perinatal risks and 

imposes long-term health consequences on 

the offspring, consistent with the 

developmental programming hypothesis 

[34]. Studies have demonstrated that 

maternal high-fat (HF) diets during 

pregnancy and lactation predispose 

offspring to obesity, insulin resistance, 

cardiovascular abnormalities, and impaired 

skeletal muscle development [35]. 

2. Morphological and Metabolic 

Alterations 

Experimental models reveal that perinatal 

HF intake leads to intramuscular lipid 

accumulation, cytokine activation, 

inflammation, and abnormal mitochondrial 

morphology in offspring skeletal muscle 

[36, 37]. Additional alterations include 

changes in fiber size and type, shifts in 

gene expression and metabolic pathways, 

and adaptive upregulation of lipid 

oxidation. However, such adaptations 

often occur at the expense of 
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mitochondrial efficiency, ultimately 

compromising oxidative capacity and 

energy homeostasis [38, 39]. Notably, 

offspring of HF-fed dams exhibit aberrant 

mitochondrial morphology and reduced 

respiratory capacity in skeletal muscle 

[40]. The reversibility of HF diet–induced 

muscular and metabolic impairments 

remains inconsistent across studies. Some 

reports indicate that post-weaning dietary 

normalization partially restores 

mitochondrial function and reduces 

inflammation, whereas others document 

persistent oxidative and structural deficits 

[37–40]. Such discrepancies may stem 

from differences in fat composition, 

exposure duration, or offspring sex, 

emphasizing the need for standardized 

experimental protocols and human-based 

validation studies. 

3. Structural and Biochemical Markers 

of Muscle Injury 

Maternal HF diet exposure is associated 

with marked structural and metabolic 

disturbances in offspring skeletal muscle. 

These include elevated levels of muscle 

damage markers such as lactate 

dehydrogenase (LDH) and creatine 

phosphokinase (CPK) [41], as well as 

excess reactive oxygen species (ROS) 

production, leading to oxidative stress and 

mitochondrial dysfunction [42]. 

Histopathological findings reveal 

degenerative muscle alterations, lipotoxic 

infiltration, vascular congestion, and loss 

of fiber integrity [43–45]. 

4. Fibrosis, Insulin Resistance, and 

Cytoskeletal Disruption 

Maternal HF intake also induces fibrotic 

remodeling, evidenced by increased 

collagen I expression and interstitial 

fibrosis in offspring skeletal muscle [46]. 

These structural changes coincide with 

reduced glycogen stores and enhanced 

insulin resistance, reflecting metabolic 

inflexibility and impaired glucose 

utilization [47]. Furthermore, elevated 

mast cell density and decreased desmin 

expression have been reported, reinforcing 

the link between maternal lipid overload, 

inflammation, fibrosis, and muscle 

disorganization in offspring [48–51]. 
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Graphical abstract illustrating the effect of 

maternal High-Fat diet on offspring 

skeletal muscle 

Limitations and Potential Biases 

Although current evidence consistently 

links maternal malnutrition to structural 

and metabolic abnormalities in offspring 

skeletal muscle, several limitations must 

be acknowledged. Publication and 

selection biases may favor studies 

reporting positive outcomes, while 

variability in animal models, diet 

composition, and exposure periods reduces 

comparability and reproducibility. 

Confounding factors such as maternal 

stress, litter size, postnatal diet, and 

housing conditions are not always 

adequately controlled. Moreover, 

translation to humans remains limited due 

to interspecies differences in growth rate, 

metabolism, and genetic background. 

Addressing these gaps through well-

controlled, longitudinal, and sex-specific 

human studies is essential to enhance the 

reliability and applicability of future 

findings. 

 

CONCLUSION 

Perinatal maternal malnutrition profoundly 

affects skeletal muscle development in 

offspring. Both low-protein and high-fat 

diets during pregnancy and lactation 

disrupt myogenesis, reduce fiber size, alter 

mitochondrial structure, and impair long-

term muscle function. These findings 

reinforce the Developmental Origins of 

Health and Disease (DOHaD) hypothesis, 

highlighting how early nutritional 

environments shape lifelong 

musculoskeletal and metabolic health. 

Nonetheless, uncertainties persist 

regarding dose–response effects, 

reversibility of damage, and sex-specific 

susceptibility. Future research should 

prioritize longitudinal human studies 

linking maternal diet to offspring muscle 

outcomes, mechanistic investigations of 

epigenetic, mitochondrial, and 

inflammatory pathways, intervention trials 

to determine optimal nutrient balance, and 

comparative analyses across sexes and 

genetic backgrounds. Ensuring adequate 

maternal nutrition remains central to 

preventing lifelong skeletal and metabolic 

disorders. 
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