

https://doi.org/10.21608/zumj.2025.424248.4191

Volume 31, Issue 11 November. 2025

Manuscript ID:ZUMJ-2509-4191 DOI:10.21608/zumj.2025.424248.4191

REVIEW ARTICLE

Perinatal Maternal Malnutrition and Its Impact on Skeletal Muscle Structure in Offspring: A Narrative Review

Ayman Noureldeen*1, Amal S. Sewelam2, Walaa A. Rashad2, Ayat M. Domouky2

¹ Human Anatomy & Embryology Department, Fakous faculty of Medicine, Zagazig University, Egypt.

²Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Egypt.

* Corresponding author:

Ayman Noureldeen E-mail:

Nourdrayman@gmail.com

Submit date:19-9-2025 Revise date:11-10-2025 Accept date:14-10-2025

ABSTRACT

Background: Maternal nutrition during the perinatal period is a critical determinant of fetal development, influencing organogenesis and tissue differentiation. Adequate nutrient supply supports the proper formation of organ systems, including skeletal muscle, which plays essential roles in locomotion, posture, metabolism, and growth. Skeletal muscle development begins early in embryogenesis and continues through the perinatal stage via tightly regulated processes of myogenesis, differentiation, and growth that are highly sensitive to the intrauterine environment. Maternal malnutrition during pregnancy or lactation, whether manifested as protein deficiency, excessive fat intake, or a combination of both, can profoundly disrupt skeletal muscle development in offspring. These nutritional imbalances reduce muscle mass and alter fiber composition and diameter, resulting in impaired metabolic capacity, weaker contractile function, a great risk of obesity, resistance to insulin, and metabolic disorders in offspring. This review aimed to provide an overview of the structural changes taking place in the skeletal muscles of offspring following maternal exposure to either low-protein or high-fat diet during pregnancy and lactation.

Conclusion: Optimal Perinatal maternal nutrition is pivotal for skeletal muscle development, and malnutrition can compromise myogenesis and metabolic health. The need for focused dietary strategies during pregnancy and lactation is highlighted by the Developmental Origins of Health and Disease (DOHaD) framework, which suggests that early nutritional problems may predispose offspring to long-term musculoskeletal and metabolic diseases.

Keywords: Perinatal maternal malnutrition; Skeletal muscle development; Protein deficiency; High-fat diet.

INTRODUCTION

renatal and the early postnatal periods critical windows for tissue differentiation and organogenesis, during which cells undergo rapid growth and maturation. Adverse conditions during these stages, such as poor maternal nutrition or metabolic stress, can disrupt developmental programming and lead to permanent alterations in organ structure and function. As emphasized by the **DOHaD** framework, such early-life influences may significantly affect adult health, increasing susceptibility to chronic diseases later in life [1,2].

A balanced maternal diet during pregnancy and lactation is essential for normal skeletal muscle development in the fetus. Adequate nutrient supply supports myoblast proliferation, differentiation, and protein synthesis, ensuring proper fiber number, type composition, and growth. In contrast, nutritional imbalances can impair these processes, leading to reduced muscle

Noureldeen, et al 5206 | Page

mass, altered fiber characteristics, and compromised metabolic function in offspring. Numerous studies highlight the strong influence of maternal nutrition on intrauterine skeletal muscle development, underscoring its importance for long-term musculoskeletal and metabolic health [3-5].

Malnutrition is increasingly recognized as a major global health concern, particularly in densely populated and underdeveloped regions. While it was once primarily attributed to poverty, food scarcity, and limited access to nutritious diets, the issue has become more complex in recent proliferation decades with the aggressive marketing of inexpensive, energy-dense, nutrient-poor foods such as fast food and junk food. Recent evidence indicates that nearly half of women of reproductive age experience malnutrition during pregnancy. Importantly, perinatal maternal malnutrition whether due to a low-protein diet, a high-fat diet, or a combination of both has been shown to induce structural alterations in the skeletal muscles of offspring [6-8].

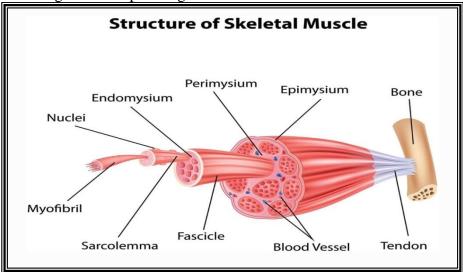
A maternal low-protein diet lowers amino acid levels in the fetus, leading to poor growth, small birth-weight, and impaired development of skeletal muscles. These early deficits may persist into later life, increasing the risk of reduced muscle function and metabolic disorders [9,10].

developed obesity nations, associated metabolic diseases have become epidemics, with children seeing the fastest rate of rise. Exposure to unfavorable intrauterine especially an increased food supply during development, can result in early-onset metabolic problems, according to evidence human studies. from Within framework of DOHaD, such intrauterine overnutrition can permanently metabolic programming, affecting insulin sensitivity, adiposity, and energy balance. The importance of maternal nutrition in determining long-term health outcomes is highlighted by these early-life changes,

which raise a person's risk of obesity, type 2 DM, and cardiovascular disease later in life [11,12]. Further, experimental animal models show that perinatal high-fat diets increase intramuscular lipid accumulation, trigger inflammation, disrupt mitochondrial morphology, and promote fiber-type shifts from oxidative to glycolytic, impairing glucose handling [13].

It was found that, high-fat diet consumption or cafeteria diet, throughout gestational and lactational period promoted increased intramuscular lipid accumulation in cross-sectioned areas of offspring skeletal muscles [14].

The purpose of this review was to clarify the structural changes in the skeletal muscles of offspring following maternal exposure to either a low-protein (LP) diet or high-fat (HF) diet through pregnancy and lactation.

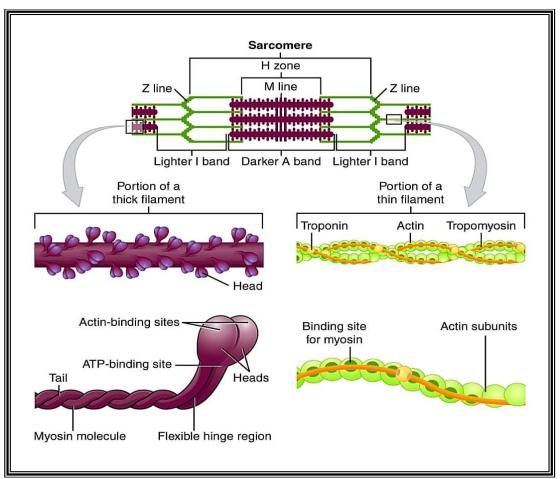

Anatomy of skeletal muscle

muscle, striated Skeletal a tissue comprising about 40% of human body weight, is distributed superficially and primarily attached to bones. Each muscle functions as an organ composed of fibers, connective tissue, nerves, and blood muscle highly vessels. Skeletal is vascularized and innervated to meet its metabolic and contractile demands. Each fiber receives input from a somatic motor neuron, while accompanying arteries, veins, and nerves branch through the epimysium to form capillary networks around the fibers [15]. Structurally, the whole muscle is covered by a connective tissue sheath called the epimysium. Within the muscle, bundles of muscle fibers called fascicles, and each fascicle is surrounded by perimysium and contains individual muscle fibers, each enveloped endomysium. These connective tissue layers extend beyond the muscle belly to form tendons or aponeuroses, which anchor to the periosteum of bones. Muscle contraction generates tension that is transmitted through these layers to the tendon, enabling skeletal movement [16]

Noureldeen, et al 5207 | Page

[Fig. 1]. The hierarchical arrangement of connective tissue layers (endomysium, perimysium, epimysium) ensures mechanical strength and coordinated contraction. These structural layers are also critical targets of pathological

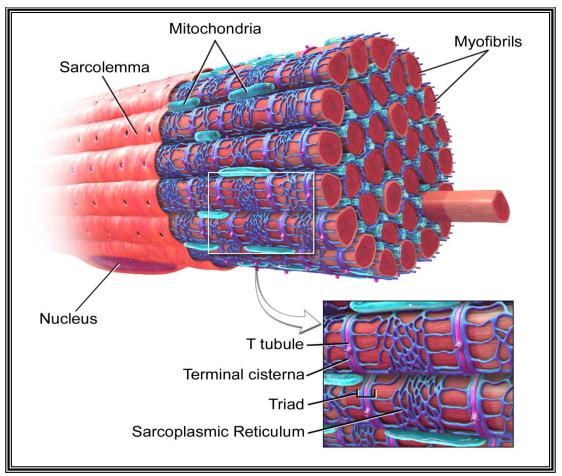
remodeling under malnutrition, as collagen deposition and fibrosis within these sheaths have been consistently reported in offspring exposed to maternal LP or HF diets [17].


Fig. (1): A diagram of skeletal muscle shows three connective tissue layers: endomysium around individual fibers, perimysium around fascicles, and epimysium surrounding the entire muscle. These layers merge at the muscle end to form a tendon that attaches to bone. Blood vessels supply the fibers [16].

Histology of skeletal muscle

Skeletal muscle fibers are elongated, tubular, and striated cells with multiple peripheral nuclei, primarily composed of myofibrils. Each fiber is enclosed by the sarcolemma surrounded externally by a specialized basement membrane composed of a basal lamina and reticular lamina beneath which lies the sarcoplasm. The basal lamina links directly to the sarcolemma, while the reticular lamina, rich in collagen, connects to the endomysium; together they support muscle integrity, growth, and regeneration [18].

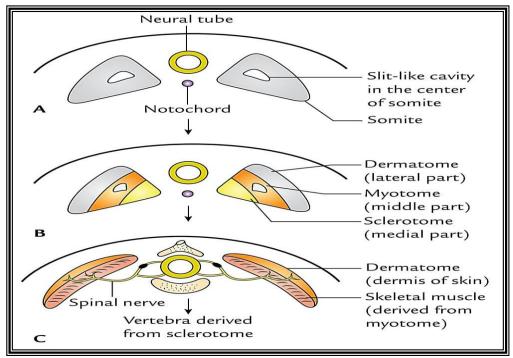
Myofibrils occupy 80–90% of muscle fiber volume and are built from myofilaments thick (myosin) and thin (actin) whose arrangement produces the characteristic light (I bands) and dark (A bands) that give skeletal muscle its striated appearance. The thick filaments form the A-band, with the central H-zone containing only thick filaments and the M-line linking myosin tails. The thin filaments define the I-band and are associated with regulatory proteins, tropomyosin and troponin, controlling contraction. The Z-line in the Iband connects thin filaments of adjacent sarcomeres. The sarcomere is the segment between Z-lines being the structural and functional unit of skeletal muscle. Each sarcomere contains a full A-band and halves of I-bands, and coordinated sliding of actin over myosin shortens myofibrils and the muscle fiber as a whole (Fig.2) [16,19].


Noureldeen, et al 5208 | Page

(2): diagram showing Α sarcomere of skeletal muscle fiber [19]. **Myofibrils** are surrounded sarcoplasmic reticulum (SR), which stores calcium ions and expands into terminal cisternae. Transverse tubules (T-tubules). formed by sarcolemma invaginations between terminal cisternae, create triads that transmit action potentials from the fiber surface, triggering calcium release and contraction via troponin binding. The sarcoplasm contains numerous elongated mitochondria between myofibrils, a small Golgi complex near the nucleus, scattered

ribosomes, and inclusions such as glycogen granules, myoglobin, and lipofuscin pigments (Fig. 3) [16, 19]. At microscopic level. sarcomere organization and mitochondrial density determine muscle contractile metabolic efficiency. Disruption of these ultrastructural features such as fragmented Z-lines. swollen mitochondria, decreased desmin expression serves as a hallmark of nutritional myopathy in offspring subjected to maternal malnutrition [20].

Noureldeen, et al 5209 | Page


Fig. (3): Diagram of skeletal muscle fibers showing long cylindrical fibers composed of myofibril bundles surrounded by mitochondria and sarcoplasmic reticulum. The zoomed view highlights a T-tubule, an invagination of the sarcolemma between terminal cisternae [16].

Development of skeletal muscles

Skeletal muscles of the head, trunk, and limbs arise from somitomeres and somites, derivatives of the paraxial mesoderm. By the third week, the paraxial mesoderm segments into somitomeres from head to tail. Cranial somitomeres form mesenchyme contributes that craniofacial muscles (with neural crest cells). From the occipital region caudally, somitomeres condense into paired somites, reaching 42-44 pairs by week five; some regress, while others form the axial skeleton [21]. Each somite differentiates

into a sclerotome (vertebrae, ribs, sternum) and a dermomyotome, which gives rise to the myotome (skeletal muscles) and dermatome (dermis) (Fig. 4) [22]. Myotomal mesoderm gives rise myoblasts, which elongate and fuse into myotubes. multinucleated Mvotubes synthesize actin, myosin, and other proteins, forming myofilaments myofibrils. Mature muscle fibers arise as nuclei shift peripherally, and bundles of fibers form muscles attached to skeletal elements [22]. Maternal malnutrition interferes with these tightly regulated stages, reducing myoblast proliferation, delaying differentiation, and impairing myotube fusion. Consequently, fewer mature fibers and smaller fiber diameters are observed in affected offspring [23].

Noureldeen, et al 5210 | Page

Fig. (4): A diagram showing subdivisions of the somite [22].

Structural Alterations in The Skeletal Muscles of the Offspring Induced by Maternal Low-Protein Diet during The Perinatal Period

1. Overview

Epidemiological and experimental evidence demonstrates that maternal lowprotein (LP) intake during pregnancy and lactation adversely affects skeletal muscle development in offspring, predisposing them to metabolic disorders in later life [24]. Protein restriction limits the fetal amino acid supply, leading to low birth weight, reduced muscle fiber number, and altered stem cell activity [10]. Offspring nursed by LP-fed dams exhibit lower body and muscle mass, smaller fiber crosssectional area, and persistent structural deficits even after post-weaning nutritional normalization [25].

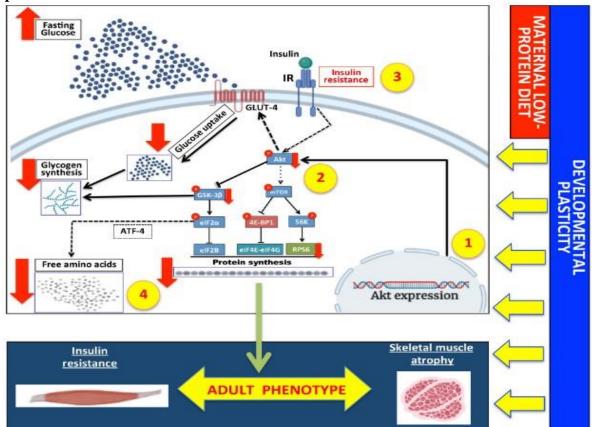
2. Structural and Ultrastructural Alterations

Experimental models have shown that maternal LP diets disrupt skeletal muscle morphology, with offspring displaying sparse myofibrils, disorganized Z-lines, and delayed sarcomere maturation [26, 27]. These structural abnormalities are accompanied by mitochondrial swelling,

fragmentation, and reduced oxidative enzyme activity, collectively impairing contractile efficiency. Prolonged exposure results in mitochondrial dysfunction, decreased mtDNA content. and downregulation ofoxidative phosphorylation-related genes [9, 28]. In parallel, defective Akt-mTOR signaling, impaired insulin-stimulated protein synthesis, and diminished glycogen storage contribute to smaller muscle fibers and reduced contractile mass (Fig. 5) [29].

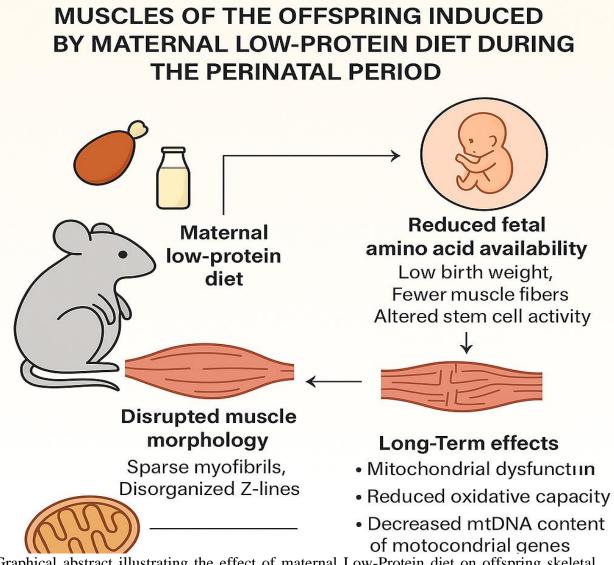
3. Histopathological Changes and Oxidative Stress

Perinatal protein restriction induces pronounced histological alterations in offspring skeletal muscles, characterized by thin, disorganized, and separated fibers, poorly defined striations, nuclear pyknosis, vascular congestion, and infiltration [25]. LP exposure during critical developmental windows disrupts oxidative homeostasis and mechanisms, increasing vulnerability to oxidative stress. Elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels confirm enhanced lipid peroxidation and cellular damage [9].


Noureldeen, et al 5211 | Page

4. Fibrosis and Extracellular Matrix Remodeling

Maternal LP diets also promote collagen accumulation and fibrosis in offspring skeletal muscles, attributed to impaired myogenesis and chronic low-grade inflammation. These processes hinder muscle regeneration and drive extracellular matrix (ECM) remodeling [29, 30]. Furthermore, significant glycogen depletion observed in LP-exposed muscles reflects defective insulin signaling and impaired glucose utilization [31].


5. Cytoskeletal Integrity and Desmin Expression

Desmin, the major intermediate filament protein in skeletal and cardiac muscles, myofibrillar alignment preserves linking adjacent Z-discs and connecting contractile apparatus the sarcolemma, nucleus, and organelles. Desmin deficiency causes multisystem myopathies characterized by fibrosis, calcification, and structural instability [32]. Consistently, reduced desmin expression has been reported in LP diet-exposed offspring, correlating with compromised architecture and impaired regenerative capacity [33].

Fig. (5): Maternal low-protein diet reduces skeletal muscle protein synthesis and mass via the akt-mTOR pathway in adult rats [29].

Noureldeen, et al 5212 | Page

Graphical abstract illustrating the effect of maternal Low-Protein diet on offspring skeletal muscle

Structural Alterations in The Skeletal Muscles of the Offspring Induced by Maternal High-Fat Diet during The Perinatal Period

1. Overview

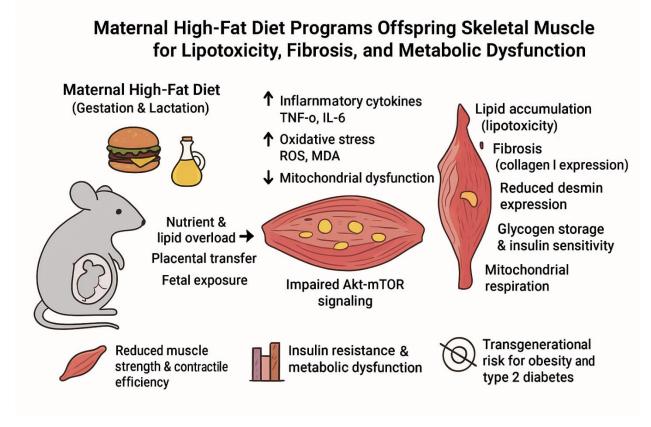
Obesity and related metabolic disorders are increasing globally, particularly among vounger populations. Emerging evidence indicates that adverse intrauterine environments. including maternal overnutrition, contribute to early-onset metabolic diseases in offspring [13]. Maternal obesity during conception and pregnancy elevates perinatal risks and imposes long-term health consequences on consistent offspring, with developmental programming hypothesis [34]. Studies have demonstrated that

maternal high-fat (HF) diets during pregnancy and lactation predispose offspring to obesity, insulin resistance, cardiovascular abnormalities, and impaired skeletal muscle development [35].

2. Morphological and Metabolic Alterations

Experimental models reveal that perinatal HF intake leads to intramuscular lipid accumulation. cvtokine activation. inflammation, and abnormal mitochondrial morphology in offspring skeletal muscle [36, 37]. Additional alterations include changes in fiber size and type, shifts in gene expression and metabolic pathways, upregulation of lipid adaptive oxidation. However, such adaptations often occur at the expense

Noureldeen, et al 5213 | Page


mitochondrial efficiency, ultimately compromising oxidative capacity and energy homeostasis [38, 39]. Notably, offspring of HF-fed dams exhibit aberrant mitochondrial morphology and reduced respiratory capacity in skeletal muscle [40]. The reversibility of HF diet-induced muscular and metabolic impairments remains inconsistent across studies. Some reports indicate that post-weaning dietary normalization partially restores reduces mitochondrial function and inflammation, whereas others document persistent oxidative and structural deficits [37–40]. Such discrepancies may stem from differences in fat composition, exposure duration, or offspring sex, emphasizing the need for standardized experimental protocols and human-based validation studies.

3. Structural and Biochemical Markers of Muscle Injury

Maternal HF diet exposure is associated with marked structural and metabolic disturbances in offspring skeletal muscle. These include elevated levels of muscle damage markers such lactate as dehydrogenase (LDH) and creatine phosphokinase (CPK) [41], as well as excess reactive oxygen species (ROS) production, leading to oxidative stress and mitochondrial dysfunction [42]. Histopathological findings reveal degenerative muscle alterations, lipotoxic infiltration, vascular congestion, and loss of fiber integrity [43–45].

4. Fibrosis, Insulin Resistance, and Cytoskeletal Disruption

Maternal HF intake also induces fibrotic remodeling. evidenced bv increased collagen I expression and interstitial fibrosis in offspring skeletal muscle [46]. These structural changes coincide with reduced glycogen stores and enhanced insulin resistance, reflecting metabolic inflexibility and impaired glucose utilization [47]. Furthermore, elevated mast cell density and decreased desmin expression have been reported, reinforcing the link between maternal lipid overload, inflammation, fibrosis. and muscle disorganization in offspring [48–51].

Noureldeen, et al 5214 | Page

Graphical abstract illustrating the effect of maternal High-Fat diet on offspring skeletal muscle

Limitations and Potential Biases

Although current evidence consistently links maternal malnutrition to structural and metabolic abnormalities in offspring skeletal muscle, several limitations must acknowledged. Publication selection biases may favor studies reporting positive outcomes, while variability animal in models. diet composition, and exposure periods reduces

CONCLUSION

Perinatal maternal malnutrition profoundly affects skeletal muscle development in offspring. Both low-protein and high-fat diets during pregnancy and lactation disrupt myogenesis, reduce fiber size, alter mitochondrial structure, and impair longterm muscle function. These findings reinforce the Developmental Origins of Health and Disease (DOHaD) hypothesis, highlighting how early nutritional environments shape lifelong musculoskeletal and metabolic health. persist Nonetheless, uncertainties regarding dose-response effects, reversibility of damage, and sex-specific susceptibility. Future research should prioritize longitudinal human studies linking maternal diet to offspring muscle outcomes, mechanistic investigations of epigenetic, mitochondrial, inflammatory pathways, intervention trials to determine optimal nutrient balance, and comparative analyses across sexes and genetic backgrounds. Ensuring adequate maternal nutrition remains central to preventing lifelong skeletal and metabolic disorders.

Author contribution statement

All authors contributed equally and actively to the substantive work leading to this manuscript and accept joint responsibility for its content. Each author participated in writing, revising, and approving the final version.

comparability and reproducibility. Confounding factors such as maternal stress, litter size, postnatal diet, and housing conditions are not adequately controlled. Moreover, translation to humans remains limited due to interspecies differences in growth rate, metabolism, and genetic background. Addressing these gaps through wellcontrolled, longitudinal, and sex-specific human studies is essential to enhance the reliability and applicability of future findings.

Conflict of Interest: None Financial Disclosure: None REFERENCES

- 1. Govoni KE, Reed SA, Zinn SA. Poor maternal nutrition during gestation: effects on offspring whole-body and tissue-specific metabolism in livestock species. J Anim Sci 2019;97(7):3142–52.
- 2. Amer MG, Mohamed NM, Shaalan AAM. Gestational protein restriction: effects on cardiac muscle structure and function in adult rats. Histol Histopathol 2017;32(12):1293–303.
- 3. Talebi S, Kianifar HR, Mehdizadeh A. Nutritional requirements in pregnancy and lactation. Clin Nutr ESPEN 2024; 64:400–10.
- Sandoval C, Wu G, Smith SB, Dunlap KA, Satterfield MC. Maternal nutrient restriction and skeletal muscle development: consequences for postnatal health. Adv Exp Med Biol 2020; 1265:153–65.
- Marshall NE, Abrams B, Barbour LA, Catalano P, Christian P, Friedman JE, et al. The importance of nutrition in pregnancy and lactation: lifelong consequences. Am J Obstet Gynecol 2022;226(5):607–32.
- 6. Bassaganya-Riera J, Berry EM, Blaak EE, Burlingame B, Le Coutre J, Van Eden W, et al. Goals in nutrition science 2020–2025. Front Nutr 2021; 7:606378.
- 7. Pandit P, Galande S, Iris F. Maternal malnutrition and anaemia in India: dysregulations leading to the "thin-fat" phenotype in newborns. J Nutr Sci 2021:10: e91.
- 8. Beauchamp B, Harper ME. In utero undernutrition programs skeletal and cardiac muscle metabolism. Front Physiol 2016; 6:401.
- 9. Vidyadharan VA, Betancourt A, Smith C, Blesson CS, Yallampalli C. Maternal low-protein diet leads to mitochondrial dysfunction and impaired energy metabolism in the skeletal muscle of male rats. Int J Mol Sci 2024;25(23):12860.
- 10. Vipin VA, Blesson CS, Yallampalli C. Maternal low-protein diet and fetal programming of lean type 2 diabetes. World J Diabetes 2022;13(3):185–202.

Noureldeen, et al 5215 | Page

- 11. Li M, Sloboda DM, Vickers MH. Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp Diabetes Res 2011; 2011:592408.
- 12. Gregory JW. Prevention of obesity and metabolic syndrome in children. Front Endocrinol (Lausanne) 2019; 10:669.
- 13. Latouche C, Heywood SE, Henry SL, Ziemann M, Lazarus R, El-Osta A, et al. Maternal overnutrition programs changes in skeletal muscle gene expression associated with insulin resistance in adult male rat offspring. J Nutr 2014;144(3):237–44.
- 14. Yang X, Lai P, Chen XG, Liu ZP, Tang YM, Rao S, et al. Maternal high-fat diet exposure leads to insulin resistance and impacts myogenic and adipogenic gene expression in offspring rats. Eur J Lipid Sci Technol 2015;117(10):1550–60.
- 15. Leonardi L. Outline of anatomy and physiology of skeletal tissues. Bone Tumors Domest Anim 2022;1–29.
- 16. Calik M. The muscle structure and function. In: Functional Exercise Anatomy and Physiology for Physiotherapists. Cham: Springer; 2023. p.77–92.
- 17. Purslow PP. The structure and role of intramuscular connective tissue in muscle function. Front Physiol 2020; 11:495.
- 18. Berridge BR, Bolon B, Herman E. Skeletal muscle system. Fundam Toxicol Pathol 2018;195–212.
- 19. Cakmak A. Adaptation of the musculoskeletal system to exercise. In: Functional Exercise Anatomy and Physiology for Physiotherapists. Cham: Springer; 2023. p.373–89.
- 20. Romanello V, Sandri M. Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr Hypertens Rep 2010;12(6):433–9.
- 21. Sadler TW. Langman's Medical Embryology. 12th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. p.404–97.
- 22. Singh V. Textbook of Clinical Embryology. 12th ed. Elsevier; 2022. p.9–87.
- 23. Devi VS. Inderbir Singh's Human Embryology. JP Medical Ltd; 2017. p.4–23.
- 24. Kim J, Choi A, Kwon YH. Maternal low-protein diet alters hepatic lipid accumulation and gene expression related to glucose metabolism in mouse offspring fed a post-weaning high-fat diet. Biochem Biophys Res Commun 2023; 682:193–8.
- 25. Giakoumaki I, Pollock N, Aljuaid T, Sannicandro AJ, Alameddine M, Owen E, et al. Postnatal protein intake as a determinant of skeletal muscle structure and function in mice. Int J Mol Sci 2022;23(15):8815.
- 26. Cabeço LC, Budri PE, Baroni M, Castan EP, Carani FR, de Souza PA, et al. Maternal protein restriction induces skeletal muscle changes without altering MyoD and myogenin expression in offspring. J Mol Histol 2012; 43:461–71.

- 27. Confortim HD, Jerônimo LC, Centenaro LA, Pinheiro PFF, Brancalhão RMC, Matheus SMM, et al. Effects of aging and maternal protein restriction on muscle fiber morphology and neuromuscular junctions after nutritional recovery. Micron 2015; 71:7–13.
- Claycombe KJ, Roemmich JN, Johnson L, Vomhof-DeKrey EE, Johnson WT. Skeletal muscle Sirt3 expression and mitochondrial respiration are regulated by prenatal low-protein diet. J Nutr Biochem 2015;26(2):184–9.
- De Vasconcelos DAA, Nachbar RT, Pinheiro CH, Amaral CL, Crisma AR, Vitzel KF, et al. Maternal low-protein diet reduces skeletal muscle protein synthesis and mass via Akt—mTOR pathway in adult rats. Front Nutr 2022; 9:947458.
- Costa TC, Du M, Nascimento KB, Galvão MC, Meneses JAM, Schultz EB, et al. Skeletal muscle development in postnatal beef cattle resulting from maternal protein restriction during mid-gestation. Animals (Basel) 2021;11(3):860.
- 31. Awata K, Shoji H, Arai Y, Santosa I, Tokita K, Murano Y, et al. Maternal protein restriction inhibits insulin signaling and induces insulin resistance in skeletal muscle of young adult rats. Juntendo Med J 2024;70(2):142–51.
- 32. Hovhannisyan Y, Li Z, Callon D, Suspène R, Batoumeni V, Canette A, et al. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation. Stem Cell Res Ther 2024;15(1):10.
- 33. Ersoy U, Kanakis I, Alameddine M, Pedraza-Vazquez G, Ozanne SE, Peffers MJ, et al. Lifelong dietary protein restriction accelerates skeletal muscle loss and reduces fibre size by impairing proteostasis and mitochondrial homeostasis. Redox Biol 2024;69:102980.
- 34. Preston JD, Reynolds LJ, Pearson KJ. Developmental origins of health span and life span: a mini-review. Gerontology 2018;64(3):237–45.
- 35. Sun H, Chen M, Liao J, He L, Wan B, Yin J, et al. Maternal lifestyle in pregnancy: implications for fetal skeletal muscle development. J Cachexia Sarcopenia Muscle 2024;15(5):1641–50.
- 36. Pileggi CA, Hedges CP, Segovia SA, Markworth JF, Durainayagam BR, Gray C, et al. Maternal high-fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring. Front Physiol 2016;7:546.
- 37. Saben JL, Boudoures AL, Asghar Z, Thompson A, Drury A, Zhang W, et al. Maternal metabolic syndrome programs mitochondrial dysfunction via germline changes across three generations. Cell Rep 2016;16(1):1–8.
- Dos Prazeres Oliveira TR, Manhães-de-Castro R, Silva JM, Cadena-Burbano EV, Cavalcanti CCL, Benjamim RAC, et al. Differential effects of maternal high-fat or isocaloric diet on offspring skeletal muscle phenotype. Life Sci 2018;215:136– 44.

Noureldeen, et al 5216 | Page

- 39. Jana BA, Chintamaneni PK, Krishnamurthy PT, Wadhwani A, Mohankumar SK. Cytosolic lipid excess-induced mitochondrial dysfunction as a cause or effect of high-fat diet-induced skeletal muscle insulin resistance. Mol Biol Rep 2019;46:957–63.
- Khamoui AV, Desai M, Ross MG, Rossiter HB. Sex-specific effects of maternal and postweaning high-fat diet on skeletal muscle mitochondrial respiration. J Dev Orig Health Dis 2018;9(6):670– 7
- 41. Kuban W, Haduch A, Bromek E, Basińska-Ziobroń A, Gawlińska K, Gawliński D, et al. Effect of maternal high-fat or high-carbohydrate diet during pregnancy and lactation on cytochrome P450 2D in liver and brain of rat offspring. Int J Mol Sci 2024;25(14):7904.
- 42. Woyames J, Souza AFP, Miranda RA, Oliveira LS, Caetano B, Andrade CBV, et al. Maternal high-fat diet aggravates fructose-induced mitochondrial damage in skeletal muscle of male offspring. J Nutr Biochem 2022; 104:108976.
- 43. Omar AK, Li Puma LC, Whitcomb LA, Risk BD, Witt AC, Bruemmer JE, et al. High-fat diet during pregnancy promotes fetal skeletal muscle fatty acid oxidation and insulin resistance in an ovine model. Am J Physiol Regul Integr Comp Physiol 2023;325(5):R523–33.
- 44. Sousa D, Rocha M, Amaro A, Ferreira-Junior MD, Cavalcante KVN, Monteiro-Alfredo T, et al. Exposure to obesogenic environments during perinatal development modulates offspring energy balance pathways in rodents. Nutrients 2023;15(5):1281.

- 45. Wang L, Valencak TG, Shan T. Fat infiltration in skeletal muscle: influential triggers and regulatory mechanisms. iScience 2024;27(3):108134.
- 46. Hossain MN, Gao Y, Li X, Zhao L, Liu X, de Avila JM, et al. Single-cell RNA transcriptomics reveals embryonic origin of fibrosis due to maternal obesity. EBioMedicine 2024; 109:104434.
- 47. Alfaradhi MZ, Ozanne SE. Developmental programming in response to maternal overnutrition and obesity. Trends Endocrinol Metab 2021;32(1):45–58.
- 48. Bai T, Shao H, Yang F, Zhang X, Tong P, Meng X, et al. Maternal high-fat diet exacerbates oral challenge-induced food allergy in offspring mice. J Agric Food Chem 2024;72(38):21240–53.
- 49. Yan X, Tocantins C, Zhu MJ, Pereira SP, Du M. Maternal nutrient excess induces stress signaling and decreases mitochondrial number in fetal baboon skeletal muscle. Biology (Basel) 2025;14(7):868.
- 50. Chavira-Suárez E, Ibañez CA, Castro-Rodríguez DC, Reyes-Castro LA, Ramírez-Leal MG, Martínez-Mota LA, et al. Developmental programming and aging effects in muscle strength of obese rat offspring in a sex-dependent manner. J Biosci 2023;48(3):19.
- 51. Alvarez-Chávez AL, De los Santos S, Coral-Vázquez RM, Reyes-Castro LA, Zambrano E, Canto P, et al. Interaction of programmed obesity and postnatal high-fat diet modifies muscle atrophy protein levels in male Wistar rats. Cell Biochem Biophys 2025;1–11.

Citation

Noureldeen, A., Sewelam, A., Rashad, W., Domouky, A. Perinatal Maternal Malnutrition and Its Impact on Skeletal Muscle Structure in Offspring: A Narrative Review. *Zagazig University Medical Journal*, 2025; (5206-5217): -. doi: 10.21608/zumj.2025.424248.4191

Noureldeen, et al 5217 | Page