

https://doi.org/10.21608/zumj.2025.421024.4164

Volume 31, Issue 11 November. 2025

Manuscript ID:ZUMJ-2509-4164 DOI:10.21608/zumj.2025.421024.4164

ORIGINAL ARTICLE

Quality Control in Medical Imaging: A Cross-Sectional Study of Knowledge and Practice Gaps Among Radiologic Technologists in Riyadh Hospitals

Halima Hawesa a*,Abeer Alsubaie a,Amera Alanezi a,Dalia Alharbi a, Duaa Alnazr a,Hissah Alobaidan a,Rahaf Almutairi a,Rawan Alrashidi a,Fai Alosaimi a,Khadija Bazzab ,

a Department of Radiological Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.b Biomedical department, Science College, Carleton University, Canada

Corresponding author:

Halima Hawesa

Email:

hhaweso@pnu.edu.sa

Submit Date: 10-09-2025 Revise Date 29-09-2025 Accept Date: 15-10-2025

Abstract

Background: Quality control (QC) is a fundamental component of quality assurance (QA) in medical imaging, ensuring diagnostic equipment consistently performs to established standards and supports accurate clinical diagnoses; accordingly, this study aimed to assess radiologic technologists' knowledge and understanding of QC procedures and to identify potential knowledge gaps by gender and years of professional experience.

Methods: A total of 92 radiologic technologists and technicians working in hospitals in Riyadh participated by completing a structured online questionnaire. The questionnaire assessed knowledge of QC protocols across various imaging modalities, including X-ray, CT, MRI, Ultrasound, PET, and SPECT, adapted from a validated instrument by Mora et al. (2021). Responses were analyzed using SPSS version 25. Associations between QC knowledge levels, gender, and years of professional experience were assessed using Fisher's Exact test. Results: A total of 92 radiologic technologists and technicians participated. Overall, 61% demonstrated weak knowledge (<10 points), 38% demonstrated good knowledge (10-15 points), and only 1% achieved excellent knowledge (>15 points). A statistically significant association was found between gender and OC knowledge (p = 0.033), with female participants scoring higher than males. Years of professional experience were also significantly associated with knowledge level (p < 0.05), with greater experience linked to improved QC understanding.

Conclusion: The study highlighted significant gaps in knowledge of QC procedures among radiologic technologists, emphasizing the need for structured, continuous education, and periodic certification programs. Integrating practical QC training into radiologic curricula and professional development initiatives is vital for maintaining imaging quality standards.

Keywords: Quality Control, Radiologic Technologists, Medical Imaging, Knowledge Assessment, Continuing Education.

INTRODUCTION

Quality control (QC) in medical imaging plays a fundamental role in

ensuring that diagnostic equipment operates within specified parameters. It safeguards image quality, patient safety,

Hawesa, et al 5500 | P a g e

and diagnostic accuracy. QC is also a core component of the broader quality assurance (QA) framework. QA involves systematic monitoring, evaluation, and corrective actions maintain to compliance with national and international regulatory standards. including those outlined by the International Atomic Energy Agency (IAEA) and the European Society of Radiology (ESR)1-3.

The implementation of QC protocols varies by imaging modality. In general radiography and fluoroscopy, QC tests assess kVp accuracy, beam alignment, timer precision, and detector Computed performance. tomography (CT) QC includes evaluations of slice thickness, contrast resolution, noise levels, and CT dose index (CTDI). Magnetic resonance imaging (MRI) QC focuses on signal-to-noise ratio (SNR), ghosting artifacts, geometric accuracy, and field homogeneity. In nuclear medicine, modalities such as PET and SPECT require QC procedures for peaking, spatial resolution, energy uniformity, and sensitivity. Ultrasound QC evaluates grayscale resolution, axial and lateral resolution, and penetration depth using standardized phantoms 4-6. modality-specific Despite these procedures, studies have consistently reported significant knowledge gaps and inconsistent QC practices among radiologic professionals. Foley et al. (2013)7 revealed notable deficiencies in CT parameter awareness among radiologists and clinical specialist radiographers. included These misunderstandings of automatic controls exposure and diagnostic reference levels. Similarly, in Saudi Arabia, Al-Saleh et al. (2023)8 noted that many radiology departments lack routine OC checks and formal training

for technologists. International guidelines recommend structured training, routine audits, and competency assessments as part of radiology department accreditation.

However, limited data exist regarding knowledge among radiologic technologists and technicians in Saudi Arabia. Most research emphasizes equipment performance, with attention to the training and competency of frontline staff. This study addresses that gap by evaluating the knowledge and understanding of QC procedures among radiologic technologists technicians working in Riyadh hospitals. Given the increasing demand diagnostic imaging, particularly tertiary care settings, strengthening QC literacy is critical. It enhances imaging standards and ensures patient safety. The findings of this study aimed to inform targeted educational interventions and supported professional development in clinical imaging environments.

METHODS Study Design and Setting

cross-sectional, analytical studyevaluated radiologic technologists' and technicians' knowledge of qualitycontrol (QC) procedures across multiple imaging modalities: data were collected over three months (January-March 2025) from public and private hospitals in Riyadh, Saudi Arabia, and protocol received Institutional Review Board approval (IRB Log No. 21-0052); participation voluntary was and with informed consent anonymous, all participants obtained from accordance with the Declaration of Helsinki.

Participants and Recruitment

A total of 92 radiologic technologists and technicians were enrolled using convenience sampling. Inclusion criteria

Hawesa, et al 5501 | P a g e

required participants to be Saudi nationals. currently employed radiology departments, and to have at least one year of clinical experience. Recruitment was conducted through official hospital emails, WhatsApp professional groups, and direct communication with department supervisors. Of the 110 professionals invited, 92 completed the survey, yielding a response rate of 83.6%.

Survey Platform

The survey was administered via Google Forms, allowing for secure and anonymous completion at participants' convenience. No personal identifiers were collected.

Survey Instrument

Data were collected using a structured, self-administered online questionnaire adapted from Mora et al. (2021), published in the *Journal of Applied Clinical Medical Physics* under a Creative Commons Attribution License (CC BY) 9. The questionnaire was informed by international QC guidelines, including those from the American College of Radiology (ACR)10, the International Atomic Energy Agency (IAEA), and the European Society of Radiology (ESR)11.

The questionnaire comprised two sections:

- Section I Demographics: Included age, gender, job title, years of experience, and educational background.
- Section II Knowledge Assessment: Consisted of 20 multiple-choice questions evaluating knowledge of QC and QA practices across six imaging modalities: X-ray, CT, MRI, Ultrasound, PET, and SPECT.
- The assessment **addressed** theoretical understanding (e.g., objectives of QC programs, differences between QA and QC, documentation

standards); practical implementation (e.g., test frequency, modality-specific procedures, personnel responsibilities); and awareness of international accreditation requirements and radiation dose reduction strategies.

Scoring and Classification

Each correct answer was awarded one point, for a total possible score of 20. Based on the total score, knowledge levels were categorized as follows:

- Weak knowledge: <10 points
- **Good knowledge:** 10–15 points
- Excellent knowledge: >15 points These classification thresholds were adapted from Mora et al. (2021) 9 and validated through pilot testing with a small group of non-participating technologists to ensure relevance to radiologic professional standards.

Experience-BasedKnowledge Association

To evaluate the association between clinical experience and QC knowledge, participants were grouped into three categories based on years of experience:

- Less than 5 years
- 5–10 years
- More than 10 years

This stratification enabled a clearer comparison across experience levels. A **Fisher's Exact test** was used to assess the **association** between experience groups and knowledge levels. A p-value of <0.05 was considered statistically significant.

Data Analysis

Data were analyzed using IBM SPSS Statistics version 25 (IBM Corp., Armonk, NY, USA)¹⁵. Descriptive statistics (frequencies and percentages) were used to summarize participant demographics and knowledge performance. Fisher's Exact test was applied to assess associations between categorical variables because some

Hawesa, et al 5502 | P a g e

contingency table cells had expected counts less than 5, making it more appropriate than the chi-square test. **Fisher's Exact tests** were applied to assess statistical **associations** between knowledge levels and selected variables such as gender and years of experience. A significance level of p < 0.05 **was used** throughout.

RESULTS

Descriptive Data Analysis A total of 92 Saudi radiologic technologists and

technicians **participated** in the study, comprising 48 males (52%) and 44 females (48%), as shown in Figure 1. This near-equal gender representation **enabled** a meaningful comparative analysis of knowledge levels related to quality control procedures in medical imaging. As shown in Figure 2, the distribution of knowledge scores by gender **illustrated** variations in quality control understanding between male and female participants.

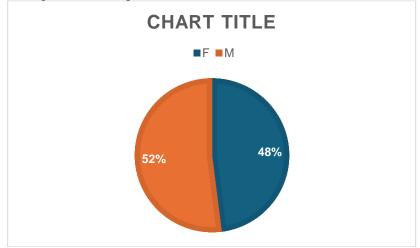


Figure 1: Pie chart shows the gender distribution of the participants

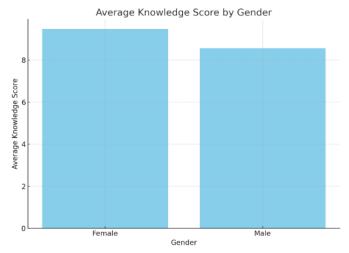


Figure 2Average knowledge scores of radiologic technologists and technicians based on gender. Female participants (coded as 2) demonstrated a higher average score compared to male participants (coded as 1), indicating better understanding of quality

Hawesa, et al 5503 | P a g e

Knowledge Statistical Analysis

Most respondents **demonstrated** limited overall knowledge of QC procedures: 61% **scored** in the weak category, 38% in the good category, and only 1%

achieved an excellent score. As shown in Table 1, 56 participants (61%) **scored** in the weak knowledge category, 35 (38%) in the good category, and only 1 (1%) **achieved** an excellent score.

Table 1: Distribution of Participants by QC Knowledge Category (n = 92).

Knowledge Category	Score Range	n	%
Weak knowledge	< 10	56	61.0
Good knowledge	10–15	35	38.0
Excellent knowledge	> 15	1	1.0

Table 2: Table 2: Distribution of Quality Control Knowledge Levels by Gender.

		Distribution of knowledge			
		Weak	Good	Excellent	
		knowledge	knowledge	knowledge	Total
Distribution of	Male	30	14	0	44
gender	Female	21	26	1	48
Total		51	40	1	92

Table 3: Association Between Gender and Knowledge Level Based on Fisher's Exact Test (p = 0.033).

Gender	Weak n (%)	Good n (%)	Excellent n (%)	p-value
Male	30 (61%)	14 (29%)	0 (0%)	
Female	21 (44%)	26 (54%)	1 (2%)	0.033

Tables 2 and 3 **presented** the results of the Fisher's Exact test used to evaluate the association between gender and knowledge level. The analysis **revealed** a statistically significant association, with a p-value of 0.033, indicating a meaningful relationship between gender and quality control knowledge, as shown in Table 3.

The statistical analysis **examined** the relationship between years of experience and knowledge level. A significant association **was identified**, with a Fisher's Exact test p-value less than 0.05, as shown in Table 4.

Hawesa, et al 5504 | P a g e

40 (100%)

3 (100%)

92 (100%)

< 0.05

1 (2.5%)

2 (67%)

51 (55%)

Years of Experience Weak n (%) Good n (%) Excellent n (%) Total n (%) p-value <5 years (n=49) 48 (98%) 0(0%)49 (100%) 1 (2%)

35 (87.5%)

0(0%)

36 (39%)

4 (10%)

1 (33%)

5 (6%)

Table 4: Association between Years of Experience and OC Knowledge Level (Fisher's Exact test, p < 0.05)

DISCUSSION

5–10 years (n=40)

>10 years (n=3)

Total (n=92)

This study evaluated the knowledge levels of radiologic technologists and technicians in Rivadh hospitals regarding quality control (QC) procedures across multiple imaging modalities. Overall, knowledge was limited: 56 participants (61%) scored in the weak category, 35 (38%) in the good category, and only 1 (1%) achieved an excellent score. This distribution highlighted a substantial gap in OC literacy, with the majority of technologists lacking competency levels that align with international expectations. The predominance of weak knowledge underscored the urgent need structured QC training and continuing professional development. findings have been reported in other contexts, where large proportions of radiologic staff demonstrated only basic or insufficient QC knowledge despite years of clinical experience [9,13,14]. Without systematic refresher training and competency assessments, knowledge gaps persist even among experienced professionals.

A statistically significant association was observed between gender and 0.033). knowledge = (p Female participants scored higher than males, a finding consistent with Abdelrahman et al. (2022) [13], who noted that radiologic

staff with more recent academic training demonstrated stronger often understanding. While this difference may reflect curricular modernization differences in adherence to protocols, causality cannot be inferred from this cross-sectional design. The result should therefore be interpreted cautiously, as gender itself is unlikely to be a direct determinant of QC knowledge.

Years of professional experience were also significantly associated with knowledge level (p < 0.05). This suggests that clinical exposure contributes building technical to competencies. However, the persistence knowledge gaps among experienced professionals indicates that experience alone is insufficient without structured refresher training. Al-Saleh et similarly reported (2023)[9] inconsistent QC implementation in Saudi radiology departments, attributing this to the absence of regular instructional updates.

International literature corroborates these concerns. Okeji et al. (2021) [14] identified widespread deficiencies in QC knowledge among Nigerian technologists, attributing the issue to limited institutional oversight and lack of refresher courses. The European Society of Radiology (2022)[15] has

5505 | Page Hawesa, et al

emphasized simulation-based training, competency assessments, and routine audits as essential strategies maintaining quality and safety in radiologic practice. Foley et al. (2013) [7] further demonstrated that extensive clinical experience does not necessarily equate to technical proficiency, as many radiologists and radiographers showed gaps in understanding key parameters kVp, mAs, and such pitch. Collectively, these findings highlighted the necessity of lifelong learning and structured continuing education to ensure that theoretical knowledge translates into clinical competence.

Technological advances in QC, including automated and remote monitoring have promoted systems, been solutions to standardization challenges. Mora et al. (2021) [9] described the IAEA's framework for remote QC in radiography and mammography, which reduces variability and minimizes human error. However, the present study demonstrates that technologist knowledge remains essential to effective OC application. Technology cannot substitute for well-trained personnel, and human oversight is critical to interpreting troubleshooting errors, results. ensuring compliance.

Institutional practice gaps also emerged as barriers to OC adherence. Research indicates that radiology many departments lack clear role definitions, standardized protocols, and documentation processes (ASRT, 2021) [16]. Even skilled technologists may be constrained by unclear expectations or insufficient administrative support. The American of College Radiologic (ACRT, Technologists 2020) [17] emphasized the importance departmental leadership, protected time for OC activities, and a culture that

supports compliance. Similarly, the American Association of Physicists in Medicine (AAPM) has long advocated for integrating on-site medical physicists to oversee QC implementation, conduct training, and support continuous quality improvement initiatives [18,19]. In settings without such support, QC outcomes may suffer due to lack of supervision and follow-through.

Brambilla et al. (2024) [20] further underscored the interdependence of technology and human resources in radiology. Their study concluded that even with state-of-the-art diagnostic equipment, QC systems falter in the absence of trained personnel and institutional commitment. They proposed a dual investment in infrastructure and education, promoting system-wide accountability and staff competency as pillars of quality assurance.

Collectively, these findings stress the urgent need for structured, continuous professional development (CPD) in QC for imaging professionals. National and institutional stakeholders should collaborate to develop standardized curricula, enforce certification requirements, and implement recurring audits. Undergraduate programs should integrate QC modules and simulation-based exercises to better prepare graduates for clinical realities. Delis et al. (2023) [21] provide additional support for this approach, demonstrating that standardized QC procedures improve imaging consistency and facilitate early detection of system malfunctions. Thev caution that variability in QC tool usage and training inconsistent diagnostic to reliability, reinforcing the need for both national policies and institution-level training strategies.

Hawesa, et al 5506 | P a g e

This need is particularly acute in rapidly expanding healthcare systems such as Saudi Arabia's. As diagnostic imaging services scale, the absence of unified QC training programs and periodic competency evaluations risks widening performance gaps. National-level professional policies, licensure mandates, and quality audits necessary to institutionalize consistent QC practices across the country.

Ultimately, improving QC knowledge and practice among radiologic professionals is essential for enhancing diagnostic precision, ensuring patient safety, and maximizing the effectiveness and longevity of imaging systems. These goals require not only individual education but also systemic change at the institutional and policy levels.

Study Limitations

This study was limited to radiologic professionals working in Riyadh, which may restrict the generalizability of the findings to other regions of Saudi Arabia or international contexts. The use of convenience sampling may also have introduced selection bias, further limiting external validity. In addition, cross-sectional design precludes causal regarding the inference observed associations between gender, years of experience, and QC knowledge. Future multicenter or national studies with probability sampling are recommended to validate and extend these findings.

Future Directions

Future research should evaluate the effectiveness of Continuing Professional Development (CPD) programs in improving QC knowledge, diagnostic accuracy, and radiation safety among radiologic professionals. Studies should also investigate systemic barriers—such as limited administrative support, funding constraints, and workforce

shortages—that hinder the consistent application of QC protocols.

Establishing a unified national QC policy, aligned with international benchmarks such as those from the International Atomic Energy Agency (IAEA) and the European Society of Radiology (ESR), would represent a strategic step toward harmonizing practices. Integrating QC modules into undergraduate curricula and mandating periodic certification for practicing technologists could further strengthen professional competency and ensure sustainable improvements in imaging quality and patient safety.

CONCLUSION

This study revealed substantial gaps in knowledge among radiologic technologists and technicians in Riyadh, with most participants scoring in the category. Although female weak graduates and those with greater clinical demonstrated experience higher knowledge levels, persistent gaps among experienced staff underscored the need for ongoing professional development. Strengthening OC awareness through training, standardized periodic certification, and national policies that enforce routine audits and institutional accountability is essential to ensure diagnostic accuracy, patient safety, equipment longevity, and high-quality radiologic services.

Conflict of Interest / Competing Interests

The authors declare no conflicts of interest related to this work.

Financial Disclosures

The authors report no financial relationships or activities that could have influenced the submitted work. No funding was received for the conduct of this study or the preparation of this manuscript.

Hawesa, et al 5507 | P a g e

Availability of Data and Materials

De-identified survey data, the study instrument, and the analysis syntax are available from the corresponding author on reasonable request (subject to institutional privacy policies).

Authors' Contributions (CRediT taxonomy)

- Conceptualization: HA
- Methodology: HA
- Investigation / Data curation: AB, AM, DA, DU, HI, RAH, RAW, F.
- Formal analysis: HA, K
- Project administration / Supervision: HA
- Visualization: AB, AM, DA
- Writing original draft: HA
- Writing review & editing: All authors
- Guarantor: HA REFERENCES
- 1. Mutic S. Quality assurance for computed tomography simulators and the computed tomography simulation process [Internet]. New York; 2003 [cited 2021 Feb 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/145 96315/
- 2. Papp J. Quality management in the imaging sciences. 6th ed. St. Louis (MO): Elsevier Health Sciences Division; 2018.
- 3. Winston J, Jackson D, Wozniak D, Zeisler J, Farish S, Thoma P. Quality control recommendations for diagnostic radiography. Vol. 3: Radiographic or fluoroscopic machines [Internet]. Frankfort (KY): Conference of Radiation Control Program Directors; 2001 [cited 2021 Apr 4]. Available from: https://cdn.ymaws.com/www.crcpd. org/resource/collection/F6C8667F-

- 1251-4450-9E84-A768C0BC2699/QC-Vol3-Web.pdf
- 4. Mansour Z, Mokhtar A, Sarhan A, Ahmed MT, El-Diasty T. Quality control of CT image using American College of Radiology (ACR) phantom. Egypt J Radiol Nucl Med. 2016;47(4):1665–71. doi: 10.1016/j.ejrnm.2016.08.016
- 5. Cho E. Cylindrical water phantom and CT images of phantom [Internet]. ResearchGate; 2021 [cited 2021 Apr 9]. Available from: https://www.researchgate.net/figure/Cylindrical-water-phantom-and-CT-images-of-phantom-A-300-mm-diameter-cylindrical-water_fig1_236039235
- Price R, Allison J, Clarke G, Dennis M, Hendrick RE, Keener C, et al. Magnetic resonance imaging (MRI) quality control manual [Internet]. Reston (VA): American College of Radiology; 2015 [cited 2020 Nov 26]. Available from: https://www.acr.org/-/media/ACR/NOINDEX/QC-Manuals/MR_QCManual.pdf
- 7. Foley SJ, Evanoff MG, Rainford LA. A questionnaire survey reviewing radiologists' and clinical specialist radiographers' knowledge of CT exposure parameters. Insights Imaging. 2013;4(5):637–46.
- 8. Al-Saleh SA, Alshammari S, Alzahrani T, Alqahtani A, Alzahrani S. Evaluation of quality control practice and awareness in radiology departments in Saudi Arabia: a national survey. Saudi J Health Sci. 2023;12(2):89–96.
- 9. Mora P, Rojas R, Carrasco J. Remote quality control tests of radiographic and mammographic equipment: results of pilot surveys organized by the IAEA. J Appl Clin Med Phys. 2021;22(9):182–90.

Hawesa, et al 5508 | P a g e

- 10. International Atomic Energy Agency (IAEA). Quality assurance programme for diagnostic radiology facilities. Human Health Series No. 16. Vienna: IAEA; 2021.
- 11. European Society of Radiology (ESR). Updated guidelines for clinical audit and quality control in radiology [Internet]. Vienna: ESR; 2022 [cited 2022 Apr 4]. Available from: https://www.myesr.org/publications
- 12. IBM Corp. IBM SPSS Statistics for Windows, Version 25.0. Armonk (NY): IBM Corp; 2017.
- 13. Abdelrahman MA, Elfaki R, Elkhidir H, Osman M, Salih S. Quality control in diagnostic radiology: assessment of knowledge, practice, and challenges among radiologic technologists in Sudan. J Radiol Nurs. 2022;41(3):232–8.
- 14. Okeji MC, Anakwuba TV, Ugwu AC, et al. Assessment of quality control practices in radiology departments in Nigerian tertiary hospitals. Radiography. 2021;27(4):1107–14.
- 15. European Society of Radiology (ESR). ESR guideline on quality

- assurance and training in radiology. Insights Imaging. 2022;13(1):42.
- 16. American Society of Radiologic Technologists (ASRT). Quality control standards and practice in diagnostic imaging. Albuquerque (NM): ASRT; 2021.
- 17. American College of Radiologic Technologists (ACRT). Radiologic technologist quality control guidelines. Washington (DC): ACRT; 2020.
- American Association of Physicists in Medicine (AAPM). AAPM Report No. 74: Quality control in diagnostic radiology. College Park (MD): AAPM; 2002.
- 19. Geijer H, Petersson H, Sund P. Radiological equipment quality and patient safety: a European survey. Eur Radiol. 2023;33(5):3397–405.
- 20. Brambilla M, Macchia G, Maggi S. Imaging equipment quality and patient safety: trends and challenges. Phys Med. 2024;117:102567.
- 21. Delis H, Papadaki E, Tzanakos G. Performance assessment in diagnostic radiology using standardized QC tools. Eur Radiol. 2023;33(5):3397–405.

Citation

Hawesa, H., Alsubaie, A., Alanezi, A., Alharbi, D., Alnazr, D., Alobaidan, H., Almutairi, R., Alrashidi, R., Alosaimi, F., Bazza, K., Hassan, M. Quality Control in Medical Imaging: A Cross-Sectional Study of Knowledge and Practice Gaps Among Radiologic Technologists in Riyadh Hospitals. *Zagazig University Medical Journal*, 2025; (5500-5509): -. doi: 10.21608/zumj.2025.421024.4164

Hawesa, et al 5509 | P a g e