

https://doi.org/10.21608/zumj.2025.425122.4199

Volume 31, Issue 11 November. 2025

Manuscript ID:ZUMJ-2509-4199 DOI:10.21608/zumj.2025.425122.4199

ORIGINAL ARTICLE

Identification of Efflux Pumps Genes (adeB, adeJ, and adeG) in Acinetobacter Baumannii Resistant to Tigecycline

Tahia Mohamed Ahmed Mohamed¹, Amira Osama Abd Elghany¹*, Thoraya Hosny¹, Shimaa E. T. Atwa², Mai Salah Ahmed¹

¹Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt

*Corresponding author: Amira Osama Abd Elghany

Email:

amira1.osama1@gmail.com

Submit Date19-09-2025 Revise Date 10-10-2025 Accept Date20-10-2025

ABSTRACT

Background: Acinetobacter baumannii is an opportunistic bacterium commonly associated with multidrug-resistant infections. One of the major therapeutic challenges is tigecycline resistance in clinical isolates. This study aimed to identify the presence of efflux pump genes) adeB, adeJ, and adeG) in tigecycline-resistant A. baumannii, to support efforts in controlling antibiotic resistance.

Methods: A cross-sectional study was conducted on 44 patients from Intensive Care Unit and Surgery Departments of Zagazig University Hospitals at the Clinical Pathology Department, Zagazig University Hospitals. The presence of adeB, adeJ, and adeG efflux pump genes was assessed, and antimicrobial susceptibility testing was performed.

Results: Among the 44 patients, the mean age was 55.3±16.86 years, with 68.2% males. ICU patients represented 68.2%, and median hospital stay was 16 days. Tigecycline resistance was observed in 54.5% of isolates, with resistance also noted for tetracycline (56.8%), ticarcillin/clavulanate (93.2%), piperacillin (95.5%), levofloxacin (93.2%), ceftriaxone (95.5%), cefepime (95.5%), and meropenem (93.2%). Significant risk factors for tigecycline resistance included prior antibiotic use, chronic lung disease, mechanical ventilation, ICU admission, prolonged hospitalization, and the presence of adeB and combined (adeB+adeJ) efflux pump genes (p<0.05). Tigecycline resistance was significantly associated with decreased susceptibility to tetracycline and minocycline. Multivariate analysis identified adeB positivity, combined (adeB+adeJ), prior antibiotic use, ICU admission, mechanical ventilation, and prolonged hospitalization as independent predictors of resistance.

Conclusion: Tigecycline-resistant A. baumannii is prevalent among ICU patients, particularly those with prior antibiotic exposure and invasive procedures. Efflux pump genes, especially adeB and ombined (adeB+ade), play a central role in mediating resistance. Continuous surveillance, antimicrobial stewardship, and infection control interventions are essential to limit the spread of resistant strains and optimize clinical outcomes.

Keywords: Acinetobacter baumannii; Tigecycline resistance; Efflux pumps; AdeB

INTRODUCTION

Gram-negative, aerobic, non-motile, non-fermentative, oxidase-negative, and catalase-positive, Acinetobacter baumannii (A. baumannii) is a coccobacillus [1]. It is an opportunistic pathogen that causes a range of hospital- and community-acquired illnesses, accounting for 2–10% of all Gram-negative hospital infections [2]. Acinetobacter infections are caused by several risk factors,

including recent surgery, prolonged hospitalization, admission to the critical care unit, mechanical ventilation, and previous exposure to antibiotics.

In recent years, tigecycline resistance in A. baumannii has been reported worldwide with prevalence ranging up to 53.0 % in certain clinical reports. A. baumannii is implicated in serious nosocomial infections and is becoming increasingly multidrug resistant

Mohamed, et al 5229 | Page

²Microbiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt

(MDR). According to international guidelines research, multidrug-resistant Acinetobacter baumannii was defined as an isolate resistant at least three different classes of antimicrobial agents, including carbapenems, cephalosporins, fluoroquinolones, aminoglycosides. One of the main reasons hospital-acquired illnesses do not respond to therapy is multidrug resistance. Numerous antibiotic-resistant genes are intrinsically Biofilm present in the bacteria [3]. development, enzymatic antibiotic inactivation. reduced membrane outer permeability, and efflux pump overexpression are among its primary resistance mechanisms [4]. Because of their wide substrate specificity and cooperative relationships with other resistance mechanisms, multi-drug efflux pumps are among those that contribute significantly to the establishment of MDR strains [5].

One of the few available treatments for MDR A. baumannii infections is tigecycline, the first drug of the glycylcycline class [6]. Nevertheless, there have been reports of growing tigecycline resistance, which has been attributed to efflux pumps like adeB, adeG, and adeJ [7]. Tigecycline resistance in A. baumannii has been associated with overexpression of these resistance-nodulationdivision (RND) efflux pumps [8]. Membraneassociated protein complexes called efflux hazardous eliminate pumps chemicals. including antibiotics, and metabolic waste products, lowering intracellular medication concentrations [9].

A periplasmic membrane fusion protein (MFP), an outer membrane pore protein (OMP), cytoplasmic membrane and a transporter work together to enable the passage of medications over the bacterial membrane, making the RND-type efflux system clinically significant. The creation and application of efflux pump inhibitors, which increase bacterial sensitivity to antibiotics, is essential for managing resistance considering the rising incidence of MDR A. baumannii [10]. This study aimed to identify the presence of efflux pump genes) adeB, adeJ, adeG) in tigecycline-resistant baumannii, to support efforts in controlling antibiotic resistance.

METHODS

This cross-sectional study was carried out between April 2024 and April 2025 at the University Hospitals' Pathology, Intensive Care Unit (ICU), and Surgery Departments. The Zagazig Medical Research Ethical Committee accepted the study protocol (IRB No. ZU-IRB #86/11-2-2024), and each patient or their first-degree relatives provided written informed permission. Every procedure was carried out in compliance with the ethical guidelines for research with human beings provided in the Declaration of Helsinki by the World Medical Association.

From a variety of clinical materials, such as sputum, bronchoalveolar lavage (BAL), urine, pus, blood, and peritoneal fluid, 44 nonduplicate clinical isolates of Acinetobacter baumannii were found. Twenty (45%) of these isolates were tigecycline-sensitive, and twenty (55%) were tigecycline-resistant. Age, sex, history of antibiotic exposure, underlying such diabetes mellitus. diseases as hypertension, chronic lung disease, and mechanical ventilation use, as well as the hospital unit of admission and surgical drainage history, were among the clinical and demographic information gathered about the patients.

Adult patients between the ages of 20 and 80 who gave written informed consent and whose culture samples were positive for Acinetobacter baumannii met the inclusion criteria. Patients undergoing antibiotic therapy at the time of sample collection, those whose culture samples tested positive for bacteria other than A. baumannii, and those who declined to take part in the study were all excluded.

Identification of Bacterial Isolates

automated system and standard microbiological methods were used identify every clinical isolate of Acinetobacter baumannii. The isolates were first cultivated on Blood agar and MacConkey agar and analyzed under a microscope using Gram **VITEK®** staining. The 2 COMPACT SYSTEM with GN ID cards (BioMérieux, Marcy L'Etoile, France) was then used to validate the identity and only isolates showing

Mohamed, et al 5230 | Page

green (fully consistent) results in the system were confirmed as A. baumannii.

Antimicrobial Susceptibility Testing (AST) The VITEK® 2 COMPACT SYSTEM was used for antimicrobial susceptibility testing. After being suspended in 3 milliliters of 0.45% saline, fresh colonies were further diluted for loading into AST GN-XN05 cards adjusted to 0.5 McFarland using DensiCHEKTM plus. Tigecycline, Tetracycline, Colistin, Minocycline, Piperacillin, Ticarcillin/clavulanate, Levofloxacin, Ceftriaxone, Cefepime, and Meropenem were among the antibiotics on the panel. AST performance was validated by using quality control strain (Pseudomonas aeruginosa ATCC 27853).

Cascades were loaded into the loading and filling stations, and patient and specimen data were input into the device. The VITEK® 2 Advanced Expert SystemTM (AES), which employs color-coded indicators to reflect confidence levels—green is entirely vellow is consistent consistent, correction, red is unknown phenotype, check results, and purple is phenotypic not in database—was used to interpret susceptibility results.

Molecular Detection of Efflux Pump Genes by Multiplex PCR

The efflux pump genes (adeB, adeJ, and adeG) were molecularly detected using multiplex PCR, a commonly used technique for determining the genes responsible for bacterial virulence and resistance. accordance with the manufacturer's instructions, genomic DNA was extracted from overnight cultures of A. baumannii isolates using the i-genomic BYF DNA Extraction Mini Kit (Lot No. 13010348). This kit makes it possible to quickly purify highquality DNA while eliminating all impurities and inhibitors. RNase A, Proteinase K, lysozyme, spin columns, collection tubes, prelysis buffer (MP), lysis buffer (MG), binding buffer (MB), washing buffer (MW), and elution buffer (ME) were among the kit's ingredients. Ethanol (96–100%), Tris-EDTA buffer (1x), pipette tips with aerosol barrier, a microcentrifuge with rotor for 2 mL tubes, a vortex mixer, water bath or heating block at 56°C, and phosphate-buffered saline (PBS) when needed were additional reagents and equipment needed.

DNA extraction works based on bacterial cell lysis to liberate genomic DNA, protein removal with protease treatment, purification with ethanol in spin columns, and elution in an appropriate buffer for PCR applications later [11]. To summarize, 7–10 medium-sized bacterial colonies were placed in 2 mL tubes filled with Tris-EDTA buffer, centrifuged for 1 minute at 13,000 rpm to pellet them, and then resuspended in 200 uL of leftover supernatant. After adding 300 µL of buffer MG, 20 µL of proteinase K, and 5 µL of RNase A, lysis was accomplished by incubating for 15 minutes at 56°C. After that, 250 µL of buffer MB and 250 µL of 80% ethanol were added to the lysate, and the mixture was sent to spin columns for centrifugation. After being cleaned with 700 µL of buffer MW, the columns were further centrifuged to dry them. Finally, 50-100 µL of buffer ME was used to elute the genomic DNA The purity and concentration of the extracted DNA were assessed using a spectrophotometer (NanoDrop, Thermo Scientific, USA) at 260/280 nm ratio before PCR amplification to ensure DNA quality and integrity, which was then kept at -20°C until PCR analysis.

DNA Amplification:

Biokit (Willowfort Co., UK) provided lyophilized primers for the universal bacterial 16S rRNA gene and the efflux pump genes (adeB, adeJ, and adeG). To create stock solutions, they were reconstituted using nuclease-free water in accordance with the manufacturer's recommendations. These were then aliquoted to prevent frequent thawing and freezing, and they were kept at -20°C until they were needed.

Each primer tube received the following amounts of distilled water for reconstitution: adeB: forward 318 μ L, reverse 260 μ L adeJ: forward 331 μ L, reverse 238 μ L adeG: forward 310 μ L, reverse 270 μ L 16S rRNA: forward 382 μ L, reverse 233 μ L Working solutions were prepared by performing a 1:15 dilution of each primer (15 μ L primer + 85 μ L nuclease-free water) before use in PCR reactions Table 1. The final

Mohamed, et al 5231 | Page

working concentration of each primer in the reaction mixture was $0.2 \mu M$.

A 30μL reaction mixture including 7μL of genomic DNA, 2μL of each forward and reverse primer solution, 15μL of 2X PCR master mix (TOPsimpleTM DyeMIX-nTaq), and 4μL of distilled water was used for multiplex PCR amplification of the adeB, adeJ, and adeG efflux pump genes. To guarantee the quality of amplification, 16S rRNA, a universal bacterial gene, was used as an internal check in every PCR experiment.

A thermal cycler (Applied Biosystems) (Thermo Fisher Scientific, USA) was used to perform PCR amplification. The conditions were as follows: initial denaturation at 95°C for 10 minutes, followed by 35 cycles of denaturation at 95°C for 15 seconds, annealing at 50°C for 35 seconds, and extension at 72°C for 35 seconds, with a final extension step at 72°C for 10 minutes.

Using agarose gel electrophoresis, both isolated genomic DNA and PCR-amplified products were detected. Each 6 µL DNA sample was treated with 3 µL of loading dye before the PCR products were separated on a 2% agarose gel. As a molecular weight marker, SizerTM TM-100 Plus DNA Marker Solution (iNtRON, Cat No: 24073) was injected into a specific well for size reference. A trans-illuminator was used to view the amplified DNA bands to verify that the target efflux pump genes were present.

Statistical Analysis

Statistical Package for Social Sciences (SPSS) version 27 was used to analyze the The chi square test and, when applicable, the Fisher exact test was used to compare categorical variables, which were presented using their absolute frequencies. The chi square trend test was used to examine ordinal data between two groups. Assumptions for use in parametric testing were validated using the Shapiro-Wilk test. Depending on the type of data, the means, standard deviations (SD), median, interquartile range were used to characterize quantitative variables. The independent sample t test (for regularly distributed data) and the Mann Whitney test (for non-normally distributed data) were employed to compare quantitative data between two groups. To find

independent risk factors linked to specific health issues, binary logistic regression was employed. P<0.05 was chosen as the threshold for statistical significance. There was a highly significant difference if $p \le 0.001$.

RESULTS

The study comprised 44 patients, whose mean age was 55.3±16.86 years, with ages ranging from 19 to 76. While women made up 31.8% of the patients, men made up most of the study population (68.2%). Sputum samples were the most collected clinical specimen type (47.7%), followed by bronchoalveolar lavage (BAL) samples (27.3%). Samples of urine, pus, blood, and peritoneal fluid made up 11.4%, 6.8%, 4.5%, and 2.3% of the total. The intensive care unit (ICU) accounted for 68.2% of all patient admissions, followed by medical wards (20.4%) and surgical wards (11.4%). The median length of hospital stay was 16 days, with a range of 3 to 75 days; 86.4% of patients stayed for 7 days or more, while 13.6% of patients stayed for fewer than 7 days. Prior use of antibiotics was the most common risk factor for infection (65.9%), followed by diabetes mellitus (47.7%), chronic lung illness (52.3%), hypertension (54.5%), mechanical ventilation (40.9%), and surgical drainage (27.3%) (Table 2).

This Table 3 showed that specifically, 54.5% of isolates were resistant to tigecycline, while 45.5% were sensitive. Tetracycline resistance was observed in 56.8% of isolates, with 36.4% sensitive and 6.8% intermediate. Colistin remained the most effective agent. with 93.2% of isolates susceptible. Minocycline demonstrated 75% sensitivity, 11.4% intermediate resistance, and 13.6% High resistance. resistance rates were observed for ticarcillin/clavulanate (93.2%), piperacillin (95.5%), levofloxacin (93.2%), ceftriaxone (95.5%), cefepime (95.5%), and meropenem (93.2%).

This Table 4 showed that thirty-two of total isolates (72.7%) carried adeB (Figure 1) and 65.9% of total isolates carried adeJ (Figure 2) and all had no adeG. Combined (adeB+adeJ) occurred in 43.2% of total A. baumannii isolates.

Table 5 showed that there was statistically significant relation between presence of Tigecycline-resistant strains and adeB (91.7%)

Mohamed, et al 5232 | Page

of isolates carried adeB versus 50% of Tigecycline-sensitive strains). There was statistically non-significant relation between presence of Tigecycline-resistant strains and presence of adeJ gene. There was statistically significant relation between presence of Tigecycline-resistant strains and combined adeB and adeJ (62.5% of Tigecyclineresistant strains had combined (adeB+adeJ) versus 20% of Tigecycline-sensitive strains). Table 6 showed that there was statistically significant relation between susceptibility to Tigecycline and tetracycline, minocycline. There was statistically nonsignificant relation between susceptibility to Tigecycline and colistin, minocycline, Ticarcillin/clavulanate, Piperacillin, Levofloxacin, ceftriaxone, Cefepime and Meronym.

Positive adeB, combined (adeB+adeJ), prior use of antibiotics, Mechanical ventilation, ICU admission, high Length of hospital stay increased risk of infection with Tigecycline resistant strains by 1.541, 7.861, 18.187, 1.61, 8.805, and 1.098 folds respectively as shown in Table 7.

Table (1): Primers used in Multiplex polymerase chain reaction (PCR) in this study [12].

Target genes	Primer sequence (5'-3')	Product Size (bp)
adeB	F: ATTTGGATTGCTGAGCATTC	340 bp
	R: GTAAACCTTGCTGACGTACA	
adeJ	F: GGTCATTAATATCTTTGGC	221 bp
	R: GGTACGAATACCGCTGTCA	
adeG	F: TTCATCTAGCCAAGCAGAAG	468 bp
	R: GTGTAGTGCCACTGGTTACT	
16S rRNA	F: GACGTACTCGCAGAATAAGC	426 bp
	R: TTAGTCTTGCGACCGTACTC	

Table 2: Demographic characteristics, specimen types, admission site, risk factors (N=44)

	N=44	%
Gender		
Female	14	31.8%
Male	30	68.2%
	Mean ± SD	Range
Age (year)	55.3 ± 16.86	19 – 76
Specimen		
Sputum	21	47.7%
BAL	12	27.3%
Urine	5	11.4%
Pus	3	6.8%
Blood	2	4.5%
Peritoneal fluid	1	2.3%
Admission site		
ICU	30	68.2%
Medical ward	9	20.4%
Surgical ward	5	11.4%
	Median (IQR)	Range
Length of hospital stay (day)	16(8 – 35)	3 – 75
<7 days	6	13.6%
≥7 days	38	86.4%
Risk factors		
Prior use of antibiotics	29	65.9%
Hypertension	24	54.5%

Mohamed, et al 5233 | Page

	N=44	%
Chronic lung disease	23	52.3%
Diabetes mellitus	21	47.7%
Mechanical ventilation	18	40.9%
Surgical drainage	12	27.3%

Table (3): Antimicrobials susceptibility pattern of Acinetobacter baumannii isolates used in the study

	Sensitive		Intermediate		Resistant	
	n	%	n	%	n	%
Tigecycline	20	45.5%	0	0%	24	54.5%
Tetracycline	16	36.4%	3	6.8%	25	56.8%
Colistin	41	93.2%	0	0%	3	6.8%
Minocycline	33	75%	5	11.4%	6	13.6%
Ticarcillin/clavulanate	1	2.3%	2	4.5%	41	93.2%
Piperacillin	1	2.3%	1	2.3%	42	95.5%
Levofloxacillin	2	4.5%	1	2.3%	41	93.2%
Ceftriaxone	0	0%	2	4.5%	42	95.5%
Cefepime	2	4.5%	0	0%	42	95.5%
Meropenem	2	4.55	1	2.3%	41	93.2%

Table (4): Distribution of efflux pumps genes adeB, adeJ, adeG and Combined (adeB + adeJ) among total Acinetobacter baumannii isolates

	N=44	%
adeB		
Negative	12	27.3%
Positive	32	72.7%
adeJ		
Negative	15	34.1%
Positive	29	65.9%
adeG		
Negative	44	100%
Positive	0	0%
Combined (adeB + adeJ)	19	43.2%

Table (5): Distribution of efflux pump genes, combined, adeB, adeJ among Tigecycline sensitive and Tigecycline resistant Acinetobacter baumannii isolates

	Tigecycline-	Tigecycline-	χ^2	р
	sensitive	resistant		
	n=20 (45%)	n=24 (55%)		
adeB				
Negative	10 (50%)	2 (8.3%)	9.549	0.002*
Positive	10 (50%)	22 (91.7%)		
adeJ				
Negative	8 (40%)	7 (29.2%)	0.57	0.45
Positive	12 (60%)	17 (70.8%)		
Combined (adeB + adeJ)				
Negative	16 (80%)	9 (37.5%)	8.031	0.005*
Positive	4 (20%)	15 (62.5%)		

^{*}p<0.05 is statistically significant, χ^2 : Chi square test, **p \leq 0.001 is statistically highly significant.

Mohamed, et al 5234 | Page

Table (6): Relation between Susceptibility to Tigecycline and different antimicrobials susceptibility

,	Tigecycline-sensitive Tigecycline-resis		χ^2	p
	n=20 (%)	n=24 (%)		
Tetracycline				
Sensitive	16 (80%)	0 (0%)	36.686 [¥]	<0.001**
Intermediate	3 (15%)	0 (0%)		
Resistant	1 (5%)	24 (100%)		
Colistin				
Sensitive	20 (100%)	21 (87.5%)	Fisher	0.239
Resistant	0 (0%)	3 (12.5%)		
Minocycline				
Sensitive	20 (100%)	13 (54.2%)	10.492 [¥]	0.001**
Intermediate	0 (0%)	5 (20.8%)		
Resistant	0 (0%)	6 (25%)		
Ticarcillin/clavulanate				
Sensitive	1 (5%)	0 (0%)	3.329 [¥]	0.068
Intermediate	2 (10%)	0 (0%)		
Resistant	17 (85%)	24 (100%)		
Piperacillin				
Sensitive	0 (0%)	1 (4.2%)	0.333^{4}	0.564
Intermediate	1 (5%)	0 (0%)		
Resistant	19 (95%)	23 (95.8%)		
Levofloxacin				
Sensitive	1 (5%)	1 (4.2%)	0.035^{4}	0.852
Intermediate	0 (0%)	1 (4.2%)		
Resistant	19 (95%)	22 (91.6%)		
Ceftriaxone				
Intermediate	1 (5%)	1 (4.2%)	Fisher	>0.999
Resistant	19 (95%)	23 (95.8%)		
Cefepime				
Sensitive	1 (5%)	1 (4.2%)	Fisher	>0.999
Resistant	19 (95%)	23 (95.8%)		
Meropenem				
Sensitive	1 (5%)	1 (4.2%)	0.035^{4}	0.852
Intermediate	0 (0%)	1 (4.2%)		
Resistant	19 (95%)	22 (91.7%)		

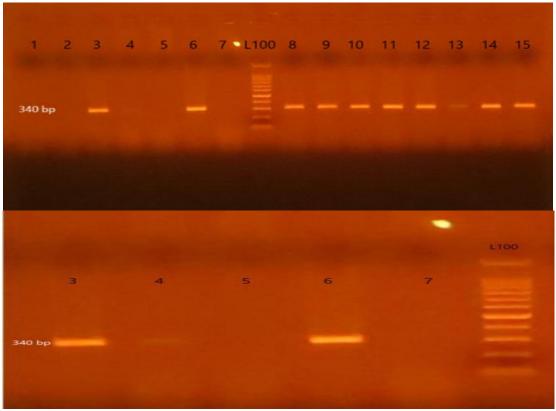
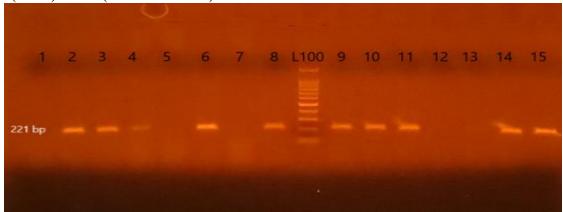

*Chi square for trend test, χ^2 : Chi square test, *p<0.05 is statistically significant, χ^2 : Chi square test **p<0.001 is statistically highly significant.

Table (7): Multivariate regression analysis of factors associated with Tigecycline resistant strains

	β	р	AOR	95% CI	
				Lower	Upper
ade B positive	-0.112	0.045*	0.894	0.0367	21.789
Combined (adeB + adeJ)	2.452	0.055	11.613	0.954	141.43
Prior use of antibiotics	2.901	0.012*	18.187	1.887	175.278
ICU	2.185	0.188	8.892	0.344	230
Mechanical ventilation	0.744	0.495	2.105	0.248	17.886
Length of hospital stay	0.084	0.023*	1.088	1.012	1.17
Chronic lung disease	-0.462	0.67	0.63	0.075	5.275
Prior use of antibiotics	2.913	0.045*	18.412	1.064	318.53


AOR: adjusted odds ratio, CI: Confidence interval, *p<0.05 is statistically significant.

Mohamed, et al 5235 | Page

Figure (1): Gel electrophoresis for detection of PCR multiplex with adeB genes primers. DNA molecular size marker (100 bp ladder), Lanes (3-4-6) and (from 8 to 15) show

positive results at 340 bp, while Lane (1-2-5-7) show negative results.

Figure (2): Gel electrophoresis for detection of PCR multiplex with adeJ genes primers. DNA molecular size marker (100 bp ladder), Lanes (2-3-4-6-8) and (9-10-11-14-15) show

DISCUSSION

This cross-sectional study was conducted at clinical pathology Department, Faculty of Medicine, Zagazig University Hospitals on 44 patients (mean age: 55.3 years; range: 19-76), with 68.2% males and 31.8% females. This study provides a unique contribution by exploring the association between adeB and adeJ efflux pump genes and tigecycline resistance in A. baumannii clinical isolates,

positive results at 221 bp, while Lanes (1-5-7-12-13) show negative results.

the results provide clinically relevant insights that can support infection control and guide antibiotic stewardship programs in hospitals.

To our knowledge, this is one of the few studies from Egypt addressing this mechanism. Our study can be supported by a retrospective study by Shin et al. [13] involving 27 patients treated with tigecycline for multidrug-resistant A. baumannii

Mohamed, et al 5236 | P a g e

infections reported a mean age of 66.2 years and 74.1% male patients.

Our study analyzed various specimen types, with sputum (47.7%) and BAL (27.3%) being most common, followed by urine (11.4%), pus (6.8%), blood (4.5%), and peritoneal fluid (2.3%).

Hospital admission data showed that 68.2% of patients were admitted to ICUs, 20.4% to medical wards, and 11.4% to surgical wards, with a median hospital stay of 16 days (range 3–75). The significant association between tigecycline resistance. admission, and prolonged hospitalization (p<0.05) supports findings by Spiliopoulou et al. [14] and Park et al. [15], indicating that ICU stay and longer hospital exposure are critical risk factors for resistant A. baumannii.

Patient risk factors included prior antibiotic use (65.9%), hypertension (54.5%), chronic lung disease (52.3%), diabetes mellitus (47.7%), mechanical ventilation (40.9%), and surgical drainage (27.3%). This is consistent with Barbier et al. [16], who identified prior broad-spectrum antibiotic exposure as a risk factor for multidrugresistant A. baumannii.

Antimicrobial susceptibility analysis revealed high resistance rates: tigecycline (54.5%), tetracycline (56.8%), and very high resistance to ticarcillin/clavulanate (93.2%), piperacillin (95.5%), levofloxacin (93.2%), ceftriaxone (95.5%), cefepime (95.5%), and meropenem (93.2%). These findings are in line with Maraki et al. [17] and Jin et al. [18], who reported increasing resistance trends over time in A. baumannii isolates.

Efflux pump gene analysis revealed that 72.7% of isolates carried adeB, 65.9% carried adeJ, none carried adeG, and 43.2% carried both adeB and adeJ Tigecycline resistance was significantly associated with adeB positivity (91.7% in resistant vs. 50% sensitive strains) and combined (adeB+adeJ) (62.5% vs 20%). adeJ alone showed no significant association (70.8% tigecycline resistance vs 60% tigecycline sensitive). These results correspond to ALTabbakh et al. [12], who reported similar patterns, emphasizing the central role of the adeABC efflux pump in mediating tigecycline resistance. Mechanistically, adeB encodes the main efflux transporter that expels tigecycline from the bacterial cell, while adeJ may potentiate this action when co-expressed, leading to higher resistance levels [19-21].

Co-susceptibility analysis showed significant correlations between tigecycline tetracycline susceptibility and and minocycline whereas (p<0.05), significant associations were observed with colistin, ticarcillin/clavulanate, piperacillin, levofloxacin. ceftriaxone, cefepime, meropenem (p>0.05). These results reflect shared mechanism of action tetracycline-class antibiotics and crossresistance via efflux pumps [22,23].

Multivariate regression analysis Positive adeB, combined (adeB+adeJ), prior use of antibiotics, and prolonged hospital stay, identified multiple independent predictors for tigecycline resistance: adeB positivity (1.541-fold), combined (adeB+adeJ) (7.861fold), prior antibiotic use (18.187-fold), mechanical ventilation (1.61-fold), ICU admission (8.805-fold), and prolonged hospital stay (1.098-fold). These findings confirm the combined effect of efflux pump activity, prior antibiotic exposure, critical environment, and prolonged hospitalization as major determinants of tigecycline resistance [24,25,26]. However, certain factors, such as ICU admission, lung disease and mechanical ventilation, are not statistical significance in the multivariate regression model. This may be due to multicollinearity with more dominant predictors, including prior prolonged antibiotic exposure and hospitalization. Consequently, their association with tigecycline resistance is likely indirect, reflecting the severity of patients' conditions and extended healthcare exposure rather than serving as independent determinants of resistance.

Study Limitations

This study has several limitations even if it offers insightful information. First, the results may not be as applicable to larger patient groups due to the single-center design and the very small sample size (n=44). Second, the study limited a better

Mohamed, et al 5237 | Page

understanding of the underlying resistance mechanisms by not quantifying efflux pump levels or molecularly expression characterizing regulatory mechanisms, such as adeRS mutations. Third, the absence of clinical outcome data, including mortality rates, treatment response, or length of ICU stay in relation to resistant infections. prevents the establishment of correlations between genetic resistance markers and patient prognosis. Additionally, potential biases in sample collection and antibiotic susceptibility testing methods may have influenced the results. Future multicenter studies with larger cohorts and comprehensive genetic analyses are warranted to validate these findings and provide more robust evidence.

CONCLUSION

This study demonstrates a high prevalence of tigecycline-resistant Acinetobacter baumannii, especially among ICU patients. Resistance was mainly linked to prior antibiotic use, prolonged hospitalization, and the presence of adeB and combined adeB+adeJ efflux pump genes. These results highlight the key role of efflux mechanisms in tigecycline resistance and the importance of antibiotic stewardship and strict infection control to prevent its spread. Future studies must include quantitative Real-Time PCR (qRT-PCR) and clinical outcome evaluations create focused management, mitigation plans for multidrug-resistant A. baumannii infections.

Conflict of Interest: There are no conflicting interests, according to the authors.

Financial Disclosures: No specific grant from a public, private, or nonprofit funding organization was awarded for this study.

Availability of the data: Upon reasonable request, the associated author will make the datasets created and/or examined during the current work available.

Authors contribution: In addition to writing and getting the paper ready for publication, the writers were in charge of gathering and analyzing the data. The final version was examined and approved by all authors.

REFERENCES

- Pourhajibagher M, Hashemi FB, Pourakbari B, Aziemzadeh M, Bahador A. Antimicrobial resistance of Acinetobacter baumannii to imipenem in Iran: a systematic review and meta-analysis. Open Microbiol J. 2016;10:32-42.
- 2. Joly-Guillou ML. Clinical impact and pathogenicity of Acinetobacter. Clin Microbiol Infect. 2005;11(11):868-73.
- 3. Visca P, Seifert H, Towner KJ. Acinetobacter infection an emerging threat to human health. IUBMB Life. 2011;63(12):1048-54.
- 4. Heritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin Microbiol Infect. 2006;12(2):123-30.
- 5. Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337-418.
- 6. Sun Y, Cai Y, Liu X, Bai N, Liang B, Wang R. The emergence of clinical resistance to tigecycline. Int J Antimicrob Agents. 2013;41(2):110-6.
- Kaviani R, Pouladi I, Niakan M, Mirnejad R. Molecular detection of adeFGH efflux pump genes and their contribution to antibiotic resistance in Acinetobacter baumannii clinical isolates. Rep Biochem Mol Biol. 2020; 8(4):413-8.
- 8. Coyne S, Courvalin P, Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother. 2011;55(3):947-53.
- 9. Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19(2):382-402.
- 10. Sharma A, Gupta VK, Pathania R. Efflux pump inhibitors for bacterial pathogens: from bench to bedside. Indian J Med Res. 2019;149(2):129-45.
- 11. Gupta N. DNA extraction and polymerase chain reaction. J Cytol. 2019;36(2):116-7.
- 12. AlTabbakh AM, Saied SA, Shahat A. Detection of genes of efflux pumps (adeB, adeJ and adeG) in tigecycline resistant Acinetobacter baumannii isolated from Benha University Hospital. Egypt J Med Microbiol. 2022;31(4):131-9.
- Shin JA, Chang YS, Kim HJ, Kim SK, Chang J, Ahn CM, Byun MK. Clinical outcomes of tigecycline in the treatment of multidrug-resistant Acinetobacter baumannii infection. Yonsei Med J. 2012;53(5):974-84.
- 14. Spiliopoulou A, Giannopoulou I, Assimakopoulos SF, Jelastopulu E, Bartzavali C, Marangos M, et al. Laboratory surveillance of Acinetobacter spp. bloodstream infections in a tertiary university hospital during a 9-year period. Trop Med Infect Dis. 2023;8(11):503.
- 15. Park GE, Kang CI, Cha MK, Cho SY, Seok H, Lee JH, et al. Bloodstream infections caused by Acinetobacter species with reduced susceptibility to tigecycline: clinical features and risk factors. Diagn Microbiol Infect Dis. 2017;87(3):263-7.
- 16. Barbier F, Hraiech S, Kernéis S, Veluppillai N, Pajot O, Poissy J, et al. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor

Mohamed, et al 5238 | Page

- combinations and cefiderocol in critically ill patients. Ann Intensive Care. 2023;13(1):65.
- 17. Maraki S, Mantadakis E, Mavromanolaki VE, Kofteridis DP, Samonis G. A 5-year surveillance study on antimicrobial resistance of Acinetobacter baumannii clinical isolates from a tertiary Greek hospital. Infect Chemother. 2016;48(3):190-8.
- 18. Jin H, Qiu F, Ji HJ, Lu Q. Analysis of drug resistance in 1,861 strains of Acinetobacter baumannii. Biomed Rep. 2016;4(4):463-6.
- 19. Yang YS, Chen HY, Hsu WJ, Chou YC, Perng CL, Shang HS, et al. Overexpression of adeABC efflux pump associated with tigecycline resistance in clinical Acinetobacter nosocomialis isolates. Clin Microbiol Infect. 2019;25(4):512.e1-6.
- 20. Sugawara E, Nikaido H. Properties of adeABC and adeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother. 2014;58(12):7250-7.
- 21. Xie L, Li J, Peng Q, Liu X, Lin F, Dai X, Ling B. Contribution of RND superfamily multidrug efflux pumps adeABC, adeFGH, and adeIJK to antimicrobial resistance and virulence factors in multidrug-resistant Acinetobacter baumannii AYE.

- Antimicrob Agents Chemother. 2025;69(2):e01858-24
- 22. De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial resistance: two-component regulatory systems and multidrug efflux pumps. Antibiotics. 2023;12(6):965.
- Ling BD, Zhang L, Li XZ. Antimicrobial resistance and drug efflux pumps in Acinetobacter. In: Li XZ, Nikaido H, Poole K, editors. Efflux-mediated antimicrobial resistance in bacteria: Mechanisms, regulation and clinical implications. Cham: Springer; 2016. p;329-58.
- 24. Abd-Elmonsef MM, Elsharawy D, Abd-Elsalam AS. Mechanical ventilator as a major cause of infection and drug resistance in intensive care unit. Al-Azhar Med J. 2018;47(4):1045-54.
- 25. Blanco N, Harris AD, Rock C, Johnson JK, Pineles L, Bonomo RA, et al. Risk factors and outcomes associated with multidrug-resistant Acinetobacter baumannii upon intensive care unit admission. Antimicrob Agents Chemother. 2018;62(1):e01631-17
- 26. Cavallazzi R, Ramirez JA. How and when to manage respiratory infections out of hospital. Eur Respir Rev. 2022;31(166):220003.

Citation

Ahmed Mohamed, T., Abd Elghany, A., Hosny, T., Atwa, S., Ahmed, M. Identification of Efflux Pumps Genes (adeB, adeJ and adeG) in Acinetobacter baumannii Resistant to Tigecycline. Zagazig University Medical Journal, 2025; (5229-5239): -. doi: 10.21608/zumj.2025.425122.4199

Mohamed, et al 5239 | Page